• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wave-induced sound in the ocean

Guo, Y. P. January 1986 (has links)
No description available.
2

Sound sources on high-speed surfaces

Blackburn, H. W. January 1983 (has links)
No description available.
3

Flow Duct Acoustics : An LES Approach

Alenius, Emma January 2012 (has links)
The search for quieter internal combustion engines drives the quest for a better understanding of the acoustic properties of engine duct components. Simulations are an important tool for enhanced understanding; they give insight into the flow-acoustic interaction in components where it is difficult to perform measurements. In this work the acoustics is obtained directly from a compressible Large Eddy Simulation (LES). With this method complex flow phenomena can be captured, as well as sound generation and acoustic scattering. The aim of the research is enhanced understanding of the acoustics of engine gas exchange components, such as the turbocharger compressor.In order to investigate methods appropriate for such studies, a simple constriction, in the form of an orifice plate, is considered. The flow through this geometry is expected to have several of the important characteristics that generate and scatter sound in more complex components, such as an unsteady shear layer, vortex generation, strong recirculation zones, pressure fluctuations at the plate, and at higher flow speeds shock waves. The sensitivity of the scattering to numerical parameters, and flow noise suppression methods, is investigated. The most efficient method for reducing noise in the result is averaging, both in time and space. Additionally, non-linear effects were found to appear when the amplitude of the acoustic velocity fluctuations became larger than around 1~\% of the mean velocity, in the orifice. The main goal of the thesis has been to enhance the understanding of the flow and acoustics of a thick orifice plate, with a jet Mach number of 0.4 to 1.2. Additionally, we evaluate different methods for analysis of the data, whereby better insight into the problem is gained. The scattering of incoming waves is compared to measurements with in general good agreement. Dynamic Mode Decomposition (DMD) is used in order to find significant frequencies in the flow and their corresponding flow structures, showing strong axisymmetric flow structures at frequencies where a tonal sound is generated and incoming waves are amplified.The main mechanisms for generating plane wave sound are identified as a fluctuating mass flow at the orifice openings and a fluctuating force at the plate sides, for subsonic jets. This study is to the author's knowledge the first numerical investigation concerning both sound generation and scattering, as well as coupling sound to a detailed study of the flow.With decomposition techniques a deeper insight into the flow is reached. It is shown that a feedback mechanism inside the orifice leads to the generation of strong coherent axisymmetric fluctuations, which in turn generate a tonal sound. / <p>QC 20121113</p>
4

Anwendung des Lattice-Boltzmann-Verfahrens zur Berechnung strömungsakustischer Probleme / Application of the Lattice-Boltzmann-method to computation of flow acoustic problems

Wilde, Andreas 20 February 2007 (has links) (PDF)
The Lattice-Boltzmann-model is analyzed with regard to application to numerical solution of flow acoustic problems. In the first part of this study the description of sound wave propagation by common variants of the Lattice-Boltzmann-model is examined by calculation of phase velocity and effective viscosity for sound waves. Schemes with nine velocities in two dimensions and nineteen velocities in three dimensions are considered. For each of these a single relaxation time model (LBGK-model) and a multiple relaxation time model (MRT) is investigated. All schemes exhibit an almost isotropic error in phase speed of sound waves. With a spatial resolution of 10 or 30 grid spacings per wavelength the deviation of phase speed is less than 1 % or 0.1 %, respectively. The dissipation of sound waves is not simulated correctly by LBGK-models since there the bulk viscosity is fixed to the shear viscosity. Apart from that there is only very little numerical dissipation. The dissipation error therefor is negligible in the audible frequency range in air as long as the simulation volumes do not become very large, i.e. much more than some hundred wavelengths. The MRT-models allow to adjust the bulk viscosity by a suitable choice of relaxation parameters. However, if the bulk viscosity is set to a realistic value, stability of the scheme requires free relaxation parameter values which are close to the relaxation parameters that determine the viscosities. Then the gain in stability of MRT-models compared to LBGK-models is lost to some extent. All schemes considered here are able to reproduce the effect of sound wave convection in homogeneous background flows. Although additional numerical errors arise in transport coefficients, the overall errors are of the same order of magnitude as in the case with zero background flow and are not critical in practical applications. In the second part of the work numerical experiments are described which demonstrate the coupling of the flow- and sound field. Three test cases are considered: Sound generation by a single vortex interaction with the leading edge of a semi-infinite flat plate, sound generation by a grazing flow over a partially covered cavity and instationary flow around a half-cylinder with an attached wedge tail. The first test case is simulated in two dimensions with a self-written program. The sound calculated directly is compared to prediction based on an acoustic analogy. The observed amplitudes of the radiated sound agree quantitatively well for all flow and eddy velocities considered here. This implies, that the coupling of the sound and flow field is correct. In the case of the cavity the flow is computed in two dimensions with a self-written program as well as in three dimensions with the commercially available program PowerFLOW. The simulated pressure fluctuations in the cavity are compared to results of a wind tunnel experiment. Good agreement between simulation and wind tunnel experiment is found. The instationary flow around a half cylinder with an attached wedge tail is simulated in three dimensions using PowerFLOW. The radiated sound cannot be captured with PowerFLOW because of insufficient quantization of fluid density. However, pressure fluctuations on the surface of the body exhibit good agreement with the result of a wind tunnel test. Summarizing the results of this work it can concluded, that the Lattice-Boltzmann-model is well suited to numerical solutions of flow acoustic problems.
5

Anwendung des Lattice-Boltzmann-Verfahrens zur Berechnung strömungsakustischer Probleme

Wilde, Andreas 12 December 2006 (has links)
The Lattice-Boltzmann-model is analyzed with regard to application to numerical solution of flow acoustic problems. In the first part of this study the description of sound wave propagation by common variants of the Lattice-Boltzmann-model is examined by calculation of phase velocity and effective viscosity for sound waves. Schemes with nine velocities in two dimensions and nineteen velocities in three dimensions are considered. For each of these a single relaxation time model (LBGK-model) and a multiple relaxation time model (MRT) is investigated. All schemes exhibit an almost isotropic error in phase speed of sound waves. With a spatial resolution of 10 or 30 grid spacings per wavelength the deviation of phase speed is less than 1 % or 0.1 %, respectively. The dissipation of sound waves is not simulated correctly by LBGK-models since there the bulk viscosity is fixed to the shear viscosity. Apart from that there is only very little numerical dissipation. The dissipation error therefor is negligible in the audible frequency range in air as long as the simulation volumes do not become very large, i.e. much more than some hundred wavelengths. The MRT-models allow to adjust the bulk viscosity by a suitable choice of relaxation parameters. However, if the bulk viscosity is set to a realistic value, stability of the scheme requires free relaxation parameter values which are close to the relaxation parameters that determine the viscosities. Then the gain in stability of MRT-models compared to LBGK-models is lost to some extent. All schemes considered here are able to reproduce the effect of sound wave convection in homogeneous background flows. Although additional numerical errors arise in transport coefficients, the overall errors are of the same order of magnitude as in the case with zero background flow and are not critical in practical applications. In the second part of the work numerical experiments are described which demonstrate the coupling of the flow- and sound field. Three test cases are considered: Sound generation by a single vortex interaction with the leading edge of a semi-infinite flat plate, sound generation by a grazing flow over a partially covered cavity and instationary flow around a half-cylinder with an attached wedge tail. The first test case is simulated in two dimensions with a self-written program. The sound calculated directly is compared to prediction based on an acoustic analogy. The observed amplitudes of the radiated sound agree quantitatively well for all flow and eddy velocities considered here. This implies, that the coupling of the sound and flow field is correct. In the case of the cavity the flow is computed in two dimensions with a self-written program as well as in three dimensions with the commercially available program PowerFLOW. The simulated pressure fluctuations in the cavity are compared to results of a wind tunnel experiment. Good agreement between simulation and wind tunnel experiment is found. The instationary flow around a half cylinder with an attached wedge tail is simulated in three dimensions using PowerFLOW. The radiated sound cannot be captured with PowerFLOW because of insufficient quantization of fluid density. However, pressure fluctuations on the surface of the body exhibit good agreement with the result of a wind tunnel test. Summarizing the results of this work it can concluded, that the Lattice-Boltzmann-model is well suited to numerical solutions of flow acoustic problems.
6

Acoustic Characterization of Turbochargers and Pipe Terminations

Tiikoja, Heiki January 2012 (has links)
In search for quieter engines there is a need for a better understanding of the acoustic properties of engine intake and exhaust system components. Besides mufflers which have the purpose of reducing pressure pulses originating from the internal combustion (IC) engine, there are many components in a modern car exhaust and intake system, e.g., air-filters, coolers, catalytic converters, particulate filters - all having an effect on the pressure pulses or sound field in the system. In this work the focus is on the turbocharged IC-engine where both, sound scattering (reflection and transmission) and sound generation from automotive turbochargers are studied. In addition, sound reflection from an open ended pipe, such as the tailpipe of an IC-engine exhaust is investigated.             Accurate and efficient methods to fully characterize turbochargers by measuring the acoustic two-port have been developed.  Compared to earlier work, a number of modifications are suggested for improving the quality of the results. A study on three different automotive turbochargers is also presented, including data for sound scattering for both the compressor and turbine. The results for the transmission of sound, which is of interest for the ability of a turbocharger to reduce noise coming from the engine, is plotted for all tested cases against a dimensionless frequency scale (Helmholtz-number). This makes it possible to generalize the result in order to draw conclusions about the behavior for any turbocharger.              The sound generation was also studied and three different methods to estimate the sound power are suggested. The methods were used to investigate sound generation at different operating points and identify source mechanisms for a turbocharger compressor.             An accurate method for measuring the reflection of plane acoustic waves from a pipe termination in a duct with hot gas flow has been developed and tested. Representing the acoustical conditions at an exhaust tail-pipe, the data obtained is important for effective modeling of exhaust systems. The experimental results of the reflection coefficient were compared with Munt`s theory on flow duct openings. The measurements were carried out for air jet velocities up to Mach 0.4 and for flow temperatures up to 100°C in order to study temperature effects on the reflection properties. It was concluded, that the experimental results agree well with the Munt theory.
7

Sound propagation from sustainable ground vehicles : from aeroacoustic sources to urban noise

Pignier, Nicolas January 2015 (has links)
Transportation is the main source of environmental noise in Europe, with an estimated 125 million people affected by excessive noise levels from road traffic, causing a burden of noise related diseases and having a substantial economic impact on society. In order to reduce exposure to high levels of traffic noise, two approaches are the topic of extensive research: preventing sound from propagating from roads and railways using for example noise barriers, and reducing the sources of noise themselves. The second solution, which addresses directly the cause of the problem, requires improved design methods, with a more systematic resort to multi-functional design. Addressing cross-functions simultaneously reduces the number of design iterations and the high cost of prototyping. The work presented in this thesis aims at developing methods that can be used to design quieter vehicle concepts within a multi-functional approach, and is articulated around two main axis of research, aerodynamic sound generation and sound propagation. The first axis aims at performing an aeroacoustic analysis to predict aerodynamic sound sources. A hybrid method is used on the example of a type of submerged air inlet called a NACA duct, where the near-field flow is solved through detached eddy simulation (DES) and where the far-field acoustics is computed using the Ffowcs Williams and Hawkings integral. Results for the flow for various operating conditions are presented and validated against experimental data from the literature, with very good agreement. Far-field acoustic results are shown, exhibiting levels and components that are strongly dependent on the operating conditions. This analysis gives a framework for future aeroacoustic analysis in the project, and sets the path for the development of air inlets with improved aerodynamic and aeroacoustic characteristics. The second axis focuses on the propagation of sound from a given source, moving in an urban environment. An approximate boundary method is presented, which relies on the Kirchhoff approximation applied to the Kirchhoff-Helmholtz integral equation. Using this approximation speeds up the computational time compared to using a regular boundary element method. The resulting expression is extended to account for multiple scattering through consecutive updates of the surface pressures, and for moving sources through the introduction of a retarded time and of a Doppler shift. Validation tests for this method are presented, from simple scatterers to a more realistic configuration, showing good agreement with analytical, experimental and simulated work. / Fordon är den främsta källan till bullerexponering i Europa med uppskattningsvis 125 miljoner människor som är utsatta för höga ljudnivåer från vägtrafik, vilket kan orsaka bullerrelaterade häsloproblem samt har en betydande ekonomisk effekt på samhället. För att minska exponeringen för höga ljudnivåer från fordon, finns det två angreppssätt som båda idag är ämne för omfattande forskning: att förhindra ljudutbredning från vägar och järnvägar (till exempel med hjälp av bullerskydd), samt att minska ljudnivån från olika bullerkällor. Den sistnämnda, som direkt riktar sig till problemets orsak, kräver förbättrade designmetoder med mer systematisk användning av multifunktionell design. Att hantera flera funktioner hos fordonet samtidigt minskar antalet designiterationer och den höga kostnaden för prototyper. Arbetet som presenteras i denna avhandling syftar till att utveckla metoder som kan användas för att utforma tystare fordonskoncept inom ramen för en multifunktionell strategi och fokuserar på två spår i forskningen: aerodynamisk ljudalstring och ljudutbredning från rörliga källor. Det första spåret i forskningen syftar till att utföra en aeroakustisk undersökning för att modellera aerodynamiska ljudkällor. En hybridmetod tillämpas på ett typ av nedsänkt luftintag, kallat NACA-intag, där källområdet i strömningen löses genom detached eddy simulation (DES) och akustiken i fjärrfältet beräknas enligt Ffowcs Williams och Hawkings integral. Resultat för strömningen för olika driftförhållanden presenteras och valideras mot experimentella data från litteraturen, med mycket god överensstämmelse. Resultat för det akustika fjärrfältet visas, vilket uppvisar nivåer och komponenter som är starkt beroende av driftförhållandena. Denna analys ger en ram för kommande analyser av aeroakustik inom projektet och visar vägen för utvecklingen av luftintag med förbättrade aerodynamiska och aeroakustika egenskaper. Det andra spåret i forskningsprojektet är inriktat på ljudets utbredning från en given källa som rör sig i en urban miljö. En approximativ randvärdesmetod presenteras som bygger på Kirchhoff approximation tillämpad på Kirchhoff-Helmholtz integralekvation. Med hjälp av denna approximation minskas beräkningstiden jämfort med vanlig boundary element method (BEM). Modellen utvecklas sedan för att kunna hantera flera reflektioner genom att det akustiska trycket på ytorna uppdateras för varje reflektion samt för att kunna hantera rörliga källor genom att introducera tidsfördröjningar och Dopplerförskjutning. Validering för denna modell presenteras, från enkla spridare till en mer realistisk urban konfiguration, som visar god överensstämmelse med analytiskt, experimentellt och simulerat data. / <p>QC 20151002</p>
8

A Wave Expansion Method for Aeroacoustic Propagation

Hammar, Johan January 2016 (has links)
Although it is possible to directly solve an entire flow-acoustics problem in one computation, this approach remains prohibitively large in terms of the computational resource required for most practical applications. Aeroacoustic problems are therefore usually split into two parts; one consisting of the source computation and one of the source propagation. Although both these parts entail great challenges on the computational method, in terms of accuracy and efficiency, it is still better than the direct solution alternative. The source usually consists of highly turbulent flows, which for most cases will need to be, at least partly, resolved. Then, acoustic waves generated by these sources often have to be propagated for long distances compared to the wavelength and might be subjected to scattering by solid objects or convective effects by the flow. Numerical methods used solve these problems therefore have to possess low dispersion and dissipation error qualities for the solution to be accurate and resource efficient. The wave expansion method (WEM) is an efficient discretization technique, which is used for wave propagation problems. The method uses fundamental solutions to the wave operator in the discretization procedure and will thus produce accurate results at two to three points per wavelength. This thesis presents a method that uses the WEM in an aeroacoustic context. Addressing the propagation of acoustic waves and transfer of sources from flow to acoustic simulations. The proposed computational procedure is applied to a co-rotating vortex pair and a cylinder in cross-flow. Overall, the computed results agree well with analytical solutions. Although the WEM is efficient in terms of the spatial discretization, the procedure requires that a Moore-Penrose pseudo-inverse is evaluated at each unique node-neighbour stencil in the grid. This evaluation significantly slows the procedure. In this thesis, a method with a regular grid is explored to speed-up this process. / <p>QC 20161121</p>

Page generated in 0.1177 seconds