• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of ambient atmospheric aerosols using accelerator-based techniques

Sekonya, Kamela Godwin 15 April 2010 (has links)
Atmospheric haze, which builds up over South Africa including our study areas, Cape Town and the Mpumalanga Highveld under calm weather conditions, causes public concern. The scope of this study was to determine the concentration and composition of atmospheric aerosol at Khayelitsha (an urban site in the Western Cape) and Ferrobank (an industrial site in Witbank, Mpumalanga). Particulate matter was collected in Khayelitsha from 18 May 2007 to 20 July 2007 (i.e. 20 samples) using a Partisol-plus sampler and a Tapered Element Oscillating Microbalance (TEOM) sampler. Sampling took place at Ferrobank from 07 February 2008 to 11 March 2008 (6 samples) using a Partisol-plus sampler and an E-sampler. The gravimetric mass of each exposed sample was determined from pre- and post-sampling weighing. The elemental composition of the particulate matter was determined for 16 elements at Khayelitsha using Proton Induced X-ray Emission (PIXE). The concentration of the elements Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Br, Sn, and Pb was determined by analysing the PIXE spectra obtained. In similar manner, the elemental composition of the particulate matter was determined for 15 elements at Ferrobank (Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Br and Pb). The average aerosol mass concentrations for different days at the Khayelitsha site were found to vary between 8.5 μg/m3 and 124.38 μg/m3. At the Khayelitsha site on three occasions during the sampling campaign the average aerosol mass concentrations exceeded the current South African air quality standard of 75 μg/m3 over 24 h. At the Ferrobank site, there are no single days that exceeded the limit of the South African air quality standard during the sampling campaign. Enrichment factors for each element of the particles sampled with an aerodynamic diameter of less than 10 μm (PM10) samples have been calculated in order to identify their possible sources. The analysis yielded five potential sources of PM10 : soil dust, sea salt, gasoline emissions, domestic wood and coal combustion. Interestingly, enrichment factor values for the Khayelitsha samples show that sea salt constitutes a major source of emissions, while Ferrobank samples, the source apportionment by unique ratios (SPUR) indicate soil dust and coal emission are the major sources of pollution. The source apportionment at Khayelitsha shows that sea salt and biomass burning are major source of air pollution.

Page generated in 0.1041 seconds