• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Petrology of the Middle Cambrian Ute Formation, North-Central Utah and Southeastern Idaho

Deputy, Edward James 01 May 1984 (has links)
The Middle Cambrian Ute Formation was studied in the Bear River Range and the Wellsville Mountains of north-central Utah and southeastern Idaho. The depositional textures and sedimentary structures found within the rocks were compared with similar modern sediments and ancient rocks to determine depositional environments, paleogeography, and diagenetic alterations. The rocks of the Ute Formation were divided into five basic types. These five rock types were formed within four identifiable lithofacies: 1) elastic marine shelf; 2) carbonate marine shelf; 3) agitated shoal; and 4) quiet-water shoal. The sequence of elastic and carbonate sediments is believed to have been deposited in a shallow, subtidal environment. Clastic sediments from the east and northwest periodically prograded over the carbonate sequences. A major regression marks the base of the Ute Formation. This was followed by a series of transgressions and regressions, until a major transgression occurred near the end of the deposition of the Ute. Paleomagnetic and faunal evidence suggest the study area was within 10° of the equator during the Middle Cambrian. Clay mineralogy of insoluble residues indicates a humid, tropical climate. Primary diagenetic features are compaction, micritization, and cementation. Secondary diagenetic changes include the inversion of high-magnesium calcite to low-magnesium calcite, aggrading neomorphism, stylolitization, fracturing, and calcite infilling. Partial dolomitization of grains and/or matrix is believed to result from the release of magnesium due to the decomposition of magnesium-rich, organic matter. The formation of a lens-shaped body of dolostone may have resulted from dolomitization by a magnesium-rich fluid circulating along faults.

Page generated in 0.0874 seconds