• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Several Herbicides on Visual Injury, Leaf Area Index, and Yield of Glyphosate-Tolerant Soybean <I>(Glycine max)</I>

Johnson, Bryan Fisher 09 May 2001 (has links)
The occasional failure of glyphosate to control all weeds throughout the entire growing season has prompted growers to sometimes use herbicides other than glyphosate on glyphosate-tolerant soybean. Field studies were conducted in 1999 and 2000 to investigate potential crop injury from several herbicides on glyphosate-tolerant soybean, and to determine the relationship between soybean maturity, planting date, and herbicide treatment on soybean injury, leaf area index (LAI), and yield. Three glyphosate-tolerant soybean cultivars representing maturity groups III, IV and V were planted at dates representing the full-season and double-crop soybean production systems used in Virginia. Within each cultivar and planting date, 15 herbicide treatments, in addition to a control receiving only metolachlor preemergence, were applied to cause multiple levels of crop injury. Results of this study indicate that glyphosate-tolerant soybean generally recovered from early-season herbicide injury and LAI reductions; however, reduced yield occurred with some treatments. Yield reductions were more common in double-crop soybean than in full-season soybean. In full-season soybean, most yield reductions occurred only in the early maturing RT-386 cultivar. These yield reductions may be attributed to the reduced developmental periods associated with early maturing cultivars and double-crop soybean that often lead to reduced vegetative growth and limited LAI. Additional reductions of LAI by some herbicide treatments on these soybean may have coincided with yield reductions; however, reduced LAI did not occur with all yield reducing treatments. Therefore, soybean LAI response to herbicide treatments does not always accurately indicate the potential detrimental effects of herbicides on soybean yield. Further, yield reductions associated with herbicide applications occurred, although soybean sometimes produced leaf area exceeding the critical LAI level of 3.5 to 4.0 which is the minimum LAI needed for soybean to achieve maximum yield. / Master of Science
2

OPTIMIZING COVER CROP ROTATIONS FOR WATER, NITROGEN AND WEED MANAGEMENT

Sciarresi, Cintia Soledad 01 January 2019 (has links)
Winter cover crops grown in rotation with grain crops can be an efficient integrated pest management tool (IPM). However, cover crop biomass production and thus successful provisioning of ecosystem services depend on a timely planting and cover crop establishment after harvest of a cash crop in the fall. One potential management adaptation is the use of short-season soybeans to advance cover crop planting date in the fall. Cover crops planted earlier in the fall may provide a greater percentage of ground cover early in the season because of higher biomass accumulation that may improve weed suppression. However, adapting to short-season soybeans could have a yield penalty compared to full-season soybeans. In addition, it is unclear if further increasing cover crop growing season and biomass production under environmental conditions in Kentucky could limit nitrogen and water availability for the next cash crop. This thesis combines the use of field trials and a crop simulation model to address the research questions posed. In Chapter 1, field trials evaluating yield and harvest date of soybean maturity group (MG) cultivars from 0 to 4 in 13 site-years across KY, NE, and OH, were used to calibrate and evaluate the DSSAT crop modeling software (v 4.7). The subsequent modeling analysis showed that planting shorter soybean maturity groups (MG) would advance date of harvest maturity (R8) by 6.6 to 11 days per unit decrease in MG for May planting or by 1 to 7.3 days for July planting. The earliest MG cultivar that maximized yield ranged from MG 0 to 3 depending on the location, allowing a winter-killed cover crop to accumulate between 257 to 270 growing degree days (GDD) before the first freeze occurrence when soybean was planted in May, and between 280 to 296 GDD when soybean was planted in July. Winter-hardy cover crops could accumulate 701 to 802 GDD following soybean planted in May and 329 to 416 GDD after soybean planted in July. In Chapter 2, a two-year field trial was conducted at Lexington, KY to evaluate the effect of a soybean – cover crop rotation with soybean cultivars MG 1, 2, 3 or 4 on cover crop biomass and canopy cover, and on weed biomass in the fall and the following spring. Results showed that having cover crops was an efficient management strategy to reduce weed biomass in the fall and spring compared to no cover treatment. Planting cover crops earlier in the fall after a short-season soybean increased cover crop biomass production and percentage of ground cover in the fall, but not the following spring. Planting cover crop earlier after a short-season soybean did not improve weed suppression in the fall or spring compared to a fallow control with full-season soybean. Having a fall herbicide application improved weed control when there was a high pressure of winter annual weeds. By the spring, delaying cover crop termination increased cover crop biomass but also did weed biomass. In Chapter 3, a soybean – cover crop – corn rotation was simulated to evaluate the effect of different soybean MG and cover crop termination, as well as year to year variability on water and nitrogen availability for the next corn crop in Lexington, KY. Simulations showed that when cover crops were terminated early, they did not reduced soil available water at corn planting. However, introducing a non-legume cover crop reduced total inorganic nitrogen content in the soil profile by 21 to 34 kg ha-1 implying 15 to 30 kg ha-1 less in corn nitrogen uptake. Cover crop management that was able to maintain similar available water values than fallow treatment while minimizing nitrogen uptake differences was cover crops planted after soybean MG 4 with an early termination. However, the best management strategies that will maximize ecosystem services from cover crops as well as cash crop productivity may need to be tailored to each environment, soil type, irrigation management, and must consider year-to-year variability.

Page generated in 0.0945 seconds