• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 13
  • 13
  • 9
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A dynamical systems theory analysis of Coulomb spacecraft formations

Jones, Drew Ryan 10 October 2013 (has links)
Coulomb forces acting between close flying charged spacecraft provide near zero propellant relative motion control, albeit with added nonlinear coupling and limited controllability. This novel concept has numerous potential applications, but also many technical challenges. In this dissertation, two- and three-craft Coulomb formations near GEO are investigated, using a rotating Hill frame dynamical model, that includes Debye shielding and differential gravity. Aspects of dynamical systems theory and optimization are applied, for insights regarding stability, and how inherent nonlinear complexities may be beneficially exploited to maintain and maneuver these electrostatic formations. Periodic relative orbits of two spacecraft, enabled by open-loop charge functions, are derived for the first time. These represent a desired extension to more substantially studied, constant charge, static Coulomb formations. An integral of motion is derived for the Hill frame model, and then applied in eliminating otherwise plausible periodic solutions. Stability of orbit families are evaluated using Floquet theory, and asymptotic stability is shown unattainable analytically. Weak stability boundary dynamics arise upon adding Coulomb forces to the relative motion problem, and therefore invariant manifolds are considered, in part, to more efficiently realize formation shape changes. A methodology to formulate and solve two-craft static Coulomb formation reconfigurations, as parameter optimization problems with minimum inertial thrust, is demonstrated. Manifolds are sought to achieve discontinuous transfers, which are then differentially corrected using charge variations and impulsive thrusting. Two nonlinear programming algorithms, gradient and stochastic, are employed as solvers and their performances are compared. Necessary and sufficient existence criteria are derived for three-craft collinear Coulomb formations, and a stability analysis is performed for the resulting discrete equilibrium cases. Each specified configuration is enabled by non-unique charge values, and so a method to compute minimum power solutions is outlined. Certain equilibrium cases are proven maintainable using only charge control, and feedback stabilized simulations demonstrate this. Practical scenarios for extending the optimal reconfiguration method are also discussed. Lastly, particular Hill frame model trajectories are integrated in an inertial frame with primary perturbations and interpolated Debye length variations. This validates qualitative stability properties, reveals particular periodic solutions to exhibit nonlinear boundedness, and illustrates higher-fidelity solution accuracies. / text
12

Coordinate­Free Spacecraft Formation Control with Global Shape Convergence under Vision­Based Sensing

Mirzaeedodangeh, Omid January 2023 (has links)
Formation control in multi-agent systems represents a groundbreaking intersection of various research fields with lots of emerging applications in various technologies. The realm of space exploration also can benefit significantly from formation control, facilitating a wide range of functions from astronomical observations, and climate monitoring to enhancing telecommunications, and on-orbit servicing and assembly. In this thesis, we present a novel 3D formation control scheme for directed graphs in a leader-follower configuration, achieving (almost) global convergence to the desired shape. Specifically, we introduce three controlled variables representing bispherical coordinates that uniquely describe the formation in 3D. Acyclic triangulated directed graphs (a class of minimally acyclic persistent graphs) are used to model the inter-agent sensing topology, while the agents’ dynamics are governed by the single-integrator model and 2nd order nonlinear version representing spacecraft formation flight. The analysis demonstrates that the proposed decentralized robust formation controller using prescribed performance control ensures (almost) global asymptotic stability while avoiding potential shape ambiguities in the final formation. Furthermore, the control laws are implementable in arbitrarily oriented local coordinate frames of follower agents using only low-cost onboard vision sensors, making them suitable for practical applications. Formation maneuvering and collision avoidance among agents are also addressed which play crucial roles in the safety of space operations. Finally, we validate our formation control approach by simulation studies. / Formationskontroll i system med flera agenter representerar en banbrytande skärningspunkt av olika forskningsområden med massor av nya tillämpningar inom olika teknologier. Rymdutforskningens rike kan också dra stor nytta av formationskontroll, underlättar ett brett utbud av funktioner från astronomiska observationer och klimat övervakning för att förbättra telekommunikation och service och montering i omloppsbana. I denna avhandling presenterar vi ett nytt 3D-formationskontrollschema för riktade grafer i en ledare-följare-konfiguration, vilket uppnår (nästan) global konvergens till önskad form. Specifikt introducerar vi tre kontrollerade variabler som representerar bisfäriska koordinater som unikt beskriver formationen i 3D. Acykliska triangulerade riktade grafer (en klass av minimalt acykliska beständiga grafer) används för att modellera avkänningstopologin mellan agenter, medan agenternas dynamik styrs av singelintegratormodellen och 2:a ordningen olinjär version som representerar rymdfarkostbildningsflygning. Analysen visar att den föreslagna decentraliserade robusta formationskontrollanten använder föreskriven prestanda kontroll säkerställer (nästan) global asymptotisk stabilitet samtidigt som potentiell form undviks oklarheter i den slutliga formationen. Dessutom är kontrolllagarna implementerbara i godtyckligt orienterade lokala koordinatramar för efterföljare som endast använder lågkostnad ombord visionsensorer, vilket gör dem lämpliga för praktiska tillämpningar. Formationsmanövrering och undvikande av kollisioner mellan agenter tas också upp som spelar avgörande roller i säkerheten vid rymdoperationer. Slutligen validerar vi vår strategi för formningskontroll genom simuleringsstudier
13

Investigation of Nonlinear Control Strategies Using GPS Simulator And Spacecraft Attitude Control Simulator

Kowalchuk, Scott Allen 17 December 2007 (has links)
In this dissertation, we discuss the Distributed Spacecraft Attitude Control System Simulator (DSACSS) testbed developed at Virginia Polytechnic Institute and State University for the purpose of investigating various control techniques for single and multiple spacecraft. DSACSS is comprised of two independent hardware-in-the-loop simulators and one software spacecraft simulator. The two hardware-in-the-loop spacecraft simulators have similar subsystems as flight-ready spacecraft (e.g. command and data handling; communications; attitude determination and control; power; payload; and guidance and navigation). The DSACSS framework is a flexible testbed for investigating a variety of spacecraft control techniques, especially control scenarios involving coupled attitude and orbital motion. The attitude hardware simulators along with numerical simulations assist in the development and evaluation of Lyapunov based asymptotically stable, nonlinear attitude controllers with three reaction wheels as the control device. The angular rate controller successfully tracks a time varying attitude trajectory. The Modified Rodrigues Parmater (MRP) attitude controller results in successfully tracking the angular rates and MRP attitude vector for a time-varying attitude trajectory. The attitude controllers successfully track the reference attitude in real-time with hardware similar to flight-ready spacecraft. Numerical simulations and the attitude hardware simulators assist in the development and evaluation of a robust, asymptotically stable, nonlinear attitude controller with three reaction wheels as the actuator for attitude control. The MRPs are chosen to represent the attitude in the development of the controller. The robust spacecraft attitude controller successfully tracks a time-varying reference attitude trajectory while bounding system uncertainties. The results of a Global Positioning System (GPS) hardware-in-the-loop simulation of two spacecraft flying in formation are presented. The simulations involve a chief spacecraft in a low Earth orbit (LEO), while a deputy spacecraft maintains an orbit position relative to the chief spacecraft. In order to maintain the formation an orbit correction maneuver (OCM) for the deputy spacecraft is required. The control of the OCM is accomplished using a classical orbital element (COE) feedback controller and simulating continual impulsive thrusting for the deputy spacecraft. The COE controller requires the relative position of the six orbital elements. The deputy communicates with the chief spacecraft to obtain the current orbit position of the chief spacecraft, which is determined by a numerical orbit propagator. The position of the deputy spacecraft is determined from a GPS receiver that is connected to a GPS hardware-in-the-loop simulator. The GPS simulator creates a radio frequency (RF) signal based on a simulated trajectory, which results in the GPS receiver calculating the navigation solution for the simulated trajectory. From the relative positions of the spacecraft the COE controller calculates the OCM for the deputy spacecraft. The formation flying simulation successfully demonstrates the closed-loop hardware-in-the-loop GPS simulator. This dissertation focuses on the development of the DSACSS facility including the development and implementation of a closed-loop GPS simulator and evaluation of nonlinear feedback attitude and orbit control laws using real-time hardware-in-the-loop simulators. / Ph. D.

Page generated in 0.213 seconds