• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimentální studium pole neutronů v podkritickém urychlovačem řízeném jaderném reaktoru / Experimental Investigation of the Neutron Field in an Accelerator Driven Subcritical Reactor

Zeman, Miroslav January 2020 (has links)
This dissertation focuses on irradiations of a spallation set-up consisting of more than half a ton of natural uranium that were executed by a 660 MeV proton beam at the Joint Institute for Nuclear Reserch in Dubna. Two types of irradiations were arranged: with and without lead shielding. Both types were arranged with threshold activation detectors (Al-27, Mn-55, Co-59, and In-nat) located throughout the whole set-up both in horizontal and vertical positions and activated by secondary neutrons produced by spallation reaction. The threshold activation detectors were analysed by the method of gamma-ray spectroscopy. Radionuclides found in the threshold detectors were analysed and reaction rates were determined for each radionuclide. Ratios of the reaction rates were determined from irradiation of the set-up with and without lead shielding. Subsequently, the neutron spectra generated inside the spallation target at different positions were calculated using Co-59 detector. The experimental results were compared with Monte Carlo simulations performed using MCNPX 2.7.0.
2

Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste / Studier av acceleratordrivna system för transmutation av kärnavfall

Dahlfors, Marcus January 2006 (has links)
<p>Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n_TOF experiment, which is a neutron cross section measurement project at CERN, is also described.</p>
3

Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste / Studier av acceleratordrivna system för transmutation av kärnavfall

Dahlfors, Marcus January 2006 (has links)
Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n_TOF experiment, which is a neutron cross section measurement project at CERN, is also described.

Page generated in 0.0895 seconds