• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biology, population dynamics and management of carpenter (Argyrozona argyrozona) an endemic South African reef fish

Brouwer, Stephen Leonard January 2005 (has links)
Carpenter, Argyrozona argyrozona (Valenciennes, 1830), is an endemic South African sparid fish. They form an important component of the commercial linefishery on the South African east coast, where they are the third most important species landed. Recent investigations revealed that the catch per unit effort (cpue) of this species has declined markedly since the early 1900’s. Despite these declines and the importance of this resource, remarkably little biological information on this species exists for providing management advice. This thesis investigates the life history of carpenter, particularly those aspects that are used for management. This includes an investigation into the stock distribution and identification of nursery areas, and an assessment of age, growth, reproduction and movement patterns. Age and growth was assessed using methods based on both otoliths and mark-recapture. Transverse sagittal sections from the Tsitsikamma National Park showed clear opaque and translucent growth increments. Marginal growth zone analysis and mark-recapture of chemically tagged fish (Oxytetracycline) revealed that these were deposited on an annual basis: opaque in summer and translucent in winter. A. argyrozona were found to be long lived (up to 27 years) and slow growing. Within reader (between counts) and between readers average percent error (APE) was 5.3 and 1.8, respectively, showing that readability of carpenter otoliths is high. Comparison between whole and sectioned otoliths showed that the former significantly under-estimated the age of fish older than 10 years (p<0.01). A large proportion (68%) of the individual growth rates derived from mark-recapture data were below those predicted by the otolith based von Bertalanffy growth model (p<0.01). This was attributed to the negative influence of external tags, as hydroids, frequently occurring on the tags of recaptured fish, were observed to cause severe lesions and in some cases, extensive fin damage. This brings into question the use of mark-recapture studies to calculate growth of some species. The effects of sampling design and sample size on age and growth estimation were assessed. The minimum sample size required to accurately estimate growth and mortality, and the effects of using either random or stratified sampling procedures were tested. Decimal and integer ageing both produced similar estimates of von Bertalanffy growth parameters, growth curves, spawner biomass-per-recruit (SB/R) and fishing mortality (F) estimates. Sampling monthly throughout the year and collecting data in a single large sample provided similar growth curves, von Bertalanffy, F and SB/R estimates. The data showed that estimates based on less than 300 random samples were unreliable. However, accurate growth parameter estimates were achievable with less than 200 samples if the sample was stratified with 10 or more samples per 2 cm size class. An investigation into the reproductive biology of A. argyrozona within the Tsitsikamma National Park revealed that they were serial spawning late gonochorists. The size at 50% maturity (L₅₀) was estimated at 292 and 297 mm FL for females and males, respectively. Both monthly gonadosomatic indices and macroscopically determined ovarian stages strongly suggest that A. argyrozona within the Tsitsikamma National Park spawn in the austral summer between November and April. The presence of post-ovulatory follicles (POF's) confirmed the six month spawning season, while monthly proportions of early (0-6 hour old) POF's showed that spawning frequency was highest (once every 1-2 days) from December to March. Although spawning season was more highly correlated to photoperiod (r = 0.859) than temperature (r = -0.161), the daily proportion of spawning fish was strongly correlated (r = 0.93) to ambient temperature over the range 9-22⁰C. Both spawning frequency and season increased with fish length. As a result of the allometric relationship between annual fecundity and fish mass a 3 kg fish was calculated to produce 5 fold more eggs per kilogram of body weight than a fish of 1 kg. In addition to producing more eggs per unit weight each year, larger fish also produce significantly larger eggs. Adult emigration and larval dispersal of A. argyrozona from the Tsitsikamma National Park (TNP), South Africa, were investigated using mark-recapture data and Acoustic Doppler Current Profiler measurements of currents. Tagging data showed that adult carpenter were mainly resident, with a small proportion (7%) leaving the TNP in both easterly and westerly directions. No relationship was found between fish movement patterns and fish size or time-at-liberty. Current patterns suggest that eggs and larvae spawned within the TNP are mainly transported eastwards towards established nursery grounds; the median estimated distance moved was 299 km (range 42-561 km) in 30 days (time to flexion). Given this pattern of ichthyoplankton dispersal together with the fact that adult carpenter within the TNP display a high degree of residency and that they are much more abundant than in adjacent fishing grounds (cpue = 23 times greater), it appears that the TNP protects a viable carpenter spawner population capable of seeding adjacent fishing grounds. Fishery independent biomass surveys and commercial linefish catch returns were used to elucidate the spatial patterns of A. argyrozona distributed along the South African continental shelf. Two distinct areas of abundance were determined, one on the central and the other on the eastern Agulhas Bank. Tagging studies revealed little exchange between them. Two distinct nursery areas were identified. These data suggest that in each area juvenile A. argyrozona settle and move inshore, and then move offshore as they grow. Otolith readability and growth rates varied between regions, with fish from the Eastern Cape having the lowest average percentage error and the slowest growth rates, readability decreased westward. L₅₀ varied between the central and eastern Agulhas Bank as did mass at length. Based on the distribution of carpenter, variability in otolith readability, mass at length, variation in growth and size at maturity, it is concluded that carpenter exist as two separate stocks, one on the central Agulhas Bank and the other on the eastern Agulhas Bank. SB/R, fecundity-per-recruit (Egg/R) and yield-per-recruit (Y/R) models were used to model both South African carpenter stocks. Owing to the allometric relationship between annual fecundity and individual size, Egg/R ratios were between 40 and 74% of SB/R at equivalent F. Egg/R ratios account for allometric increases in fecundity with size/age, and are therefore regarded as more accurate estimates of reproductive potential, and biological reference points for per-recruit analysis should wherever possible be based on this quantum. It is shown that the current length at first capture (lc) (250 mm TL) and F (at M = 0.1) will reduce Egg/R to 6.41% of the pristine value in the Eastern Cape and between 6.06 and 14.15% on the central Agulhas Bank, indicating that both stocks are heavily over exploited. An increase in lc from 250 to 350 mm TL and a 70% reduction in commercial fishing effort is recommended to attain a target reference point of 40% Egg/RF=0. Bag frequency analysis indicates that a reduction in daily bag limit from 10 to 4 fish.person¹.day⁻¹ would effect an equivalent reduction in recreational F. The trawl bycatch of carpenter is only 3% of the reported line catch, consequently restrictions to this fishery are not recommended.
2

Movement bahaviour of three South African inshore sparid species in rocky intertidal and shallow subtidal habitats

Watt-Pringle, Peter Andrew January 2009 (has links)
This study investigated the movement behaviour of three inshore South African sparids – blacktail (Diplodus sargus capensis), zebra (Diplodus cervinus hottentotus) and white musselcracker (Sparodon durbanensis), popular inshore fishery species caught in appreciable numbers along much of the South African coast. The first study component examined movements of juveniles in a rocky intertidal nursery area at Schoenmakerskop near Port Elizabeth. Juveniles in a single gully were tagged with Visible Implant Elastomer (VIE) and resighted at the study site on snorkelling gear over a seven-month period. Tagged zebra and musselcracker displayed limited movement between potential low tide refuges, being observed repeatedly in the same gully over the full duration of the study. However, blacktail displayed greater movements and were seen infrequently in the later period of the study, probably having undergone an ontogenetic habitat shift to subtidal areas. There was evidence that blacktail maintain use of their intertidal nursery over high tide, during which the other two species moved into shallower areas adjacent to their low tide refuge. The results of three national tagging programs were analysed to determine the movement patterns of adolescent and adult fishes. The coast-wide ORI-WWF National Voluntary Tagging Program and two dedicated research programs in marine protected areas (MPAs) at De Hoop MPA and Tsitsikamma National Park (TNP) recorded few large-scale movements of tagged adult blacktail, zebra and juvenile musselcracker. High spatial-resolution data from the TNP suggested movements were usually on scales far smaller than one km. Together with long periods at liberty for many recaptured individuals, this suggests these fishes are longterm residents of small home range areas. However, tagged musselcracker over 600 mm forklength (adults) were observed to make large-scale movements, including some in excess of 800 km from Eastern Cape to KwaZulu-Natal waters. Predominantly eastward movements of adults recaptured during the spawning season indicate seasonal spawning migrations that occur in different regions of the coast. These enable the use of prevailing oceanographic currents to disperse eggs and larvae to suitable rocky nursery habitat. The third component of this study made use of high-resolution data on the temporal and spatial distribution of catches by scientific angling in the TNP to examine the daily activity patterns of the study species in relation to diel and tidal cycles, and habitat use. Blacktail capture probability was correlated with the diurnal light cycle, with peaks close to twilight suggesting elevated crepuscular foraging activity. Catches of blacktail, zebra and small musselcracker were correlated with the tidal cycle, foraging peaking over high tide periods. All three species used shallow inshore habitats extensively for foraging, blacktail showing a preference for sandy areas, while zebra and small musselcracker preferred shallow reef. Capture probability of larger musselcracker, however, was unrelated to habitat, possibly evidence of increasing area and habitat use with an ontogenetic change in diet. The lifetime movement patterns of these three species are discussed in relation to conservation measures and their management in South African fisheries. Restricted movement throughout post-settlement life for blacktail and zebra, and during the juvenile phase for musselcracker, makes local populations vulnerable to overexploitation. At present, MPAs probably play an important role in protecting local blacktail and zebra populations from overexploitation, and limited post-settlement movements mean the degree of larval dispersal between protected and adjacent areas will likely determine the effectiveness of MPAs in enhancing fisheries for these species. By contrast, MPAs likely provide recruits to fisheries for musselcracker during ontogenetic movements and dispersal from MPAs during spawning migrations. MPAs only offer partial protection to adult musselcracker populations in the spawning season, but this could nevertheless be significant under high levels of exploitation.
3

Movement patterns and genetic stock delineation of an endemic South African sparid, the Poenskop, Cymatoceps nasutus (Castelnau, 1861) / Movement patterns and genetic stock delineation of an endemic South African sparid, the Poenskop, Cymatoceps nastus (Castelnau, 1861)

Murray, Taryn Sara January 2013 (has links)
Poenskop Cymatoceps nasutus (Pisces: Sparidae), an endemic South African sparid, is an important angling species being predominantly targeted by the recreational shore and skiboat sector. This species is slow-growing, long-lived, late-maturing and sex-changing, making poenskop acutely sensitive to over-exploitation. Despite interventions, such as the imposition of size and bag limits (currently 50 cm TL and one per licensed fisher per day) by authorities, catch-per-unit-effort trends reflect a severe and consistent stock decline over the last two decades. Poenskop has been identified as a priority species for research and conservation. Although the biology and population dynamics of this species have been well-documented, little is known about the movement behaviour of poenskop. Furthermore, there is a complete lack of information on its genetic stock structure. This thesis aimed to address the current knowledge gaps concerning movement behaviour and genetic stock structure of poenskop, making use of a range of methods and drawing on available information, including available fishery records as well as published and unpublished survey and research data, and data from long-term monitoring programmes. Analysis of available catch data (published and unpublished) revealed a decline in the number of poenskop caught as well as size of fish taken over the last two decades, ultimately reflecting the collapse of the stock (estimated to be at 20% of their pristine level). Improved catch-per-unit-effort data from the Tsitsikamma National Park Marine Protected Area (MPA), and larger poenskop being caught in the no-take areas than adjacent exploited areas of the Pondoland MPA confirmed that MPAs can be effective for the protection and management of poenskop. The current MPA network in South Africa is already wellestablished, and encompasses considerable reef areas, being preferable for poenskop habitation. Conventional dart tagging and recapture information from three ongoing, long-term fishtagging projects, conducted throughout the poenskop’s distribution, indicated high levels of residency at all life-history stages. Coastal region, seasonality and time at recapture did not appear to have a significant effect on the level of movement or distance moved. However, on examining the relationship among coastal movements and fish size and ages, larger and older fish (adults) moved greater distances, with juveniles and sub-adults showing high degrees of residency. An estimation of home-range size indicated smaller poenskop to hold smaller home-ranges, while larger poenskop hold larger home-ranges. Large easterly displacements of a number of adult poenskop is in accordance with previous findings that this species may undertake a unidirectional migration up the coastline of South Africa where they possibly settle in Transkei waters for the remainder of their lives. This high level of residency makes poenskop vulnerable to localised depletion, although they can be effectively protected by suitable MPAs. Despite considerable tagging effort along the South African coastline (2 704 poenskop tagged with 189 recaptures, between 1984 and 2010), there remains limited information on the connectivity of different regions along the South African coastline. This was addressed using mitochondrial DNA sequencing. The mitochondrial DNA control region was used due to its high substitution rate, haploid nature, maternal inheritance and absence of recombination. The mtDNA sequencing showed no evidence of major geographic barriers to gene flow in this species. Samples collected throughout the core distribution of poenskop showed high genetic diversity (h = 0.88, π = 0.01), low genetic differentiation among regions, no spatial structure (ɸST = 0.012, p = 0.208) and no evidence of isolation by distance. The collapsed stock status of poenskop as well as the fact that it is being actively targeted by recreational and commercial fishers suggests that this species requires improved management, with consideration given to its life-history style, residency and poor conservation status. Management recommendations for poenskop, combined with increasing South Africa’s existing MPA network, include the possibility of setting up a closed season (during known spawning periods) as well as the decommercialisation of this species. The techniques used and developed in this study can also be adopted for other overexploited linefish species.

Page generated in 0.076 seconds