• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 9
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Fast MLP-based Learning Method and its Application to Mine Countermeasure Missions

Shao, Hang January 2012 (has links)
In this research, a novel machine learning method is designed and applied to Mine Countermeasure Missions. Similarly to some kernel methods, the proposed approach seeks to compute a linear model from another higher dimensional feature space. However, no kernel is used and the feature mapping is explicit. Computation can be done directly in the accessible feature space. In the proposed approach, the feature projection is implemented by constructing a large hidden layer, which differs from traditional belief that Multi-Layer Perceptron is usually funnel-shaped and the hidden layer is used as feature extractor. The proposed approach is a general method that can be applied to various problems. It is able to improve the performance of the neural network based methods and the learning speed of support vector machine. The classification speed of the proposed approach is also faster than that of kernel machines on the mine countermeasure mission task.
12

Machine Learning for Metabolite Identification with Mass Spectrometry Data / 質量分析データによる代謝産物識別のための機械学習手法構築

NGUYEN, DAI HAI 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第22754号 / 薬科博第128号 / 新制||薬科||14(附属図書館) / 京都大学大学院薬学研究科医薬創成情報科学専攻 / (主査)教授 馬見塚 拓, 教授 緒方 博之, 教授 石濱 泰 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
13

Inferential GANs and Deep Feature Selection with Applications

Yao Chen (8892395) 15 June 2020 (has links)
Deep nueral networks (DNNs) have become popular due to their predictive power and flexibility in model fitting. In unsupervised learning, variational autoencoders (VAEs) and generative adverarial networks (GANs) are two most popular and successful generative models. How to provide a unifying framework combining the best of VAEs and GANs in a principled way is a challenging task. In supervised learning, the demand for high-dimensional data analysis has grown significantly, especially in the applications of social networking, bioinformatics, and neuroscience. How to simultaneously approximate the true underlying nonlinear system and identify relevant features based on high-dimensional data (typically with the sample size smaller than the dimension, a.k.a. small-n-large-p) is another challenging task.<div><br></div><div>In this dissertation, we have provided satisfactory answers for these two challenges. In addition, we have illustrated some promising applications using modern machine learning methods.<br></div><div><br></div><div>In the first chapter, we introduce a novel inferential Wasserstein GAN (iWGAN) model, which is a principled framework to fuse auto-encoders and WGANs. GANs have been impactful on many problems and applications but suffer from unstable training. The Wasserstein GAN (WGAN) leverages the Wasserstein distance to avoid the caveats in the minmax two-player training of GANs but has other defects such as mode collapse and lack of metric to detect the convergence. The iWGAN model jointly learns an encoder network and a generator network motivated by the iterative primal dual optimization process. The encoder network maps the observed samples to the latent space and the generator network maps the samples from the latent space to the data space. We establish the generalization error bound of iWGANs to theoretically justify the performance of iWGANs. We further provide a rigorous probabilistic interpretation of our model under the framework of maximum likelihood estimation. The iWGAN, with a clear stopping criteria, has many advantages over other autoencoder GANs. The empirical experiments show that the iWGAN greatly mitigates the symptom of mode collapse, speeds up the convergence, and is able to provide a measurement of quality check for each individual sample. We illustrate the ability of iWGANs by obtaining a competitive and stable performance with state-of-the-art for benchmark datasets. <br></div><div><br></div><div>In the second chapter, we present a general framework for high-dimensional nonlinear variable selection using deep neural networks under the framework of supervised learning. The network architecture includes both a selection layer and approximation layers. The problem can be cast as a sparsity-constrained optimization with a sparse parameter in the selection layer and other parameters in the approximation layers. This problem is challenging due to the sparse constraint and the nonconvex optimization. We propose a novel algorithm, called Deep Feature Selection, to estimate both the sparse parameter and the other parameters. Theoretically, we establish the algorithm convergence and the selection consistency when the objective function has a Generalized Stable Restricted Hessian. This result provides theoretical justifications of our method and generalizes known results for high-dimensional linear variable selection. Simulations and real data analysis are conducted to demonstrate the superior performance of our method.<br></div><div><br></div><div><div>In the third chapter, we develop a novel methodology to classify the electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the Physionet Challenge 2017. More specifically, we use piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features related to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features. The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieves an average F1 score of 81% for a 10-fold cross validation and also achieved 81% for F1 score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the Physionet Challenge 2017.</div></div><div><br></div><div>In the fourth chapter, we introduce a novel region-selection penalty in the framework of image-on-scalar regression to impose sparsity of pixel values and extract active regions simultaneously. This method helps identify regions of interest (ROI) associated with certain disease, which has a great impact on public health. Our penalty combines the Smoothly Clipped Absolute Deviation (SCAD) regularization, enforcing sparsity, and the SCAD of total variation (TV) regularization, enforcing spatial contiguity, into one group, which segments contiguous spatial regions against zero-valued background. Efficient algorithm is based on the alternative direction method of multipliers (ADMM) which decomposes the non-convex problem into two iterative optimization problems with explicit solutions. Another virtue of the proposed method is that a divide and conquer learning algorithm is developed, thereby allowing scaling to large images. Several examples are presented and the experimental results are compared with other state-of-the-art approaches. <br></div>
14

Novel Statistical Models for Complex Data Structures

January 2012 (has links)
abstract: Rapid advance in sensor and information technology has resulted in both spatially and temporally data-rich environment, which creates a pressing need for us to develop novel statistical methods and the associated computational tools to extract intelligent knowledge and informative patterns from these massive datasets. The statistical challenges for addressing these massive datasets lay in their complex structures, such as high-dimensionality, hierarchy, multi-modality, heterogeneity and data uncertainty. Besides the statistical challenges, the associated computational approaches are also considered essential in achieving efficiency, effectiveness, as well as the numerical stability in practice. On the other hand, some recent developments in statistics and machine learning, such as sparse learning, transfer learning, and some traditional methodologies which still hold potential, such as multi-level models, all shed lights on addressing these complex datasets in a statistically powerful and computationally efficient way. In this dissertation, we identify four kinds of general complex datasets, including "high-dimensional datasets", "hierarchically-structured datasets", "multimodality datasets" and "data uncertainties", which are ubiquitous in many domains, such as biology, medicine, neuroscience, health care delivery, manufacturing, etc. We depict the development of novel statistical models to analyze complex datasets which fall under these four categories, and we show how these models can be applied to some real-world applications, such as Alzheimer's disease research, nursing care process, and manufacturing. / Dissertation/Thesis / Ph.D. Industrial Engineering 2012
15

Learning with Sparcity: Structures, Optimization and Applications

Chen, Xi 01 July 2013 (has links)
The development of modern information technology has enabled collecting data of unprecedented size and complexity. Examples include web text data, microarray & proteomics, and data from scientific domains (e.g., meteorology). To learn from these high dimensional and complex data, traditional machine learning techniques often suffer from the curse of dimensionality and unaffordable computational cost. However, learning from large-scale high-dimensional data promises big payoffs in text mining, gene analysis, and numerous other consequential tasks. Recently developed sparse learning techniques provide us a suite of tools for understanding and exploring high dimensional data from many areas in science and engineering. By exploring sparsity, we can always learn a parsimonious and compact model which is more interpretable and computationally tractable at application time. When it is known that the underlying model is indeed sparse, sparse learning methods can provide us a more consistent model and much improved prediction performance. However, the existing methods are still insufficient for modeling complex or dynamic structures of the data, such as those evidenced in pathways of genomic data, gene regulatory network, and synonyms in text data. This thesis develops structured sparse learning methods along with scalable optimization algorithms to explore and predict high dimensional data with complex structures. In particular, we address three aspects of structured sparse learning: 1. Efficient and scalable optimization methods with fast convergence guarantees for a wide spectrum of high-dimensional learning tasks, including single or multi-task structured regression, canonical correlation analysis as well as online sparse learning. 2. Learning dynamic structures of different types of undirected graphical models, e.g., conditional Gaussian or conditional forest graphical models. 3. Demonstrating the usefulness of the proposed methods in various applications, e.g., computational genomics and spatial-temporal climatological data. In addition, we also design specialized sparse learning methods for text mining applications, including ranking and latent semantic analysis. In the last part of the thesis, we also present the future direction of the high-dimensional structured sparse learning from both computational and statistical aspects.
16

Mining brain imaging and genetics data via structured sparse learning

Yan, Jingwen 29 April 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual loss of brain functions, usually preceded by memory impairments. It has been widely affecting aging Americans over 65 old and listed as 6th leading cause of death. More importantly, unlike other diseases, loss of brain function in AD progression usually leads to the significant decline in self-care abilities. And this will undoubtedly exert a lot of pressure on family members, friends, communities and the whole society due to the time-consuming daily care and high health care expenditures. In the past decade, while deaths attributed to the number one cause, heart disease, has decreased 16 percent, deaths attributed to AD has increased 68 percent. And all of these situations will continue to deteriorate as the population ages during the next several decades. To prevent such health care crisis, substantial efforts have been made to help cure, slow or stop the progression of the disease. The massive data generated through these efforts, like multimodal neuroimaging scans as well as next generation sequences, provides unprecedented opportunities for researchers to look into the deep side of the disease, with more confidence and precision. While plenty of efforts have been made to pull in those existing machine learning and statistical models, the correlated structure and high dimensionality of imaging and genetics data are generally ignored or avoided through targeted analysis. Therefore their performances on imaging genetics study are quite limited and still have plenty to be improved. The primary contribution of this work lies in the development of novel prior knowledge-guided regression and association models, and their applications in various neurobiological problems, such as identification of cognitive performance related imaging biomarkers and imaging genetics associations. In summary, this work has achieved the following research goals: (1) Explore the multimodal imaging biomarkers toward various cognitive functions using group-guided learning algorithms, (2) Development and application of novel network structure guided sparse regression model, (3) Development and application of novel network structure guided sparse multivariate association model, and (4) Promotion of the computation efficiency through parallelization strategies.

Page generated in 0.0836 seconds