• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MODELS AND ALGORITHMS FOR INTERACTIVE AUDIO RENDERING

Tsingos, Nicolas 14 April 2008 (has links) (PDF)
Les systèmes de réalité virtuelle interactifs combinent des représentations visuelle, sonore et haptique, afin de simuler de manière immersive l'exploration d'un monde tridimensionnel représenté depuis le point de vue d'un observateur contrôlé en temps réel par l'utilisateur. La plupart des travaux effectués dans ce domaine ont historiquement port'e sur les aspects visuels (par exemple des méthodes d'affichage interactif de modèles 3D complexes ou de simulation réaliste et efficace de l'éclairage) et relativement peu de travaux ont été consacrés 'a la simulation de sources sonores virtuelles 'également dénommée auralisation. Il est pourtant certain que la simulation sonore est un facteur clé dans la production d'environnements de synthèse, la perception sonore s'ajoutant à la perception visuelle pour produire une interaction plus naturelle. En particulier, les effets sonores spatialisés, dont la direction de provenance est fidèlement reproduite aux oreilles de l'auditeur, sont particulièrement importants pour localiser les objets, séparer de multiples signaux sonores simultanés et donner des indices sur les caractéristiques spatiales de l'environnement (taille, matériaux, etc.). La plupart des systèmes de réalité virtuelle immersifs, des simulateurs les plus complexes aux jeux vidéo destin'es au grand public mettent aujourd'hui en œuvre des algorithmes de synthèse et spatialisation des sons qui permettent d'améliorer la navigation et d'accroître le réalisme et la sensation de présence de l'utilisateur dans l'environnement de synthèse. Comme la synthèse d'image dont elle est l'équivalent auditif, l'auralisation, appel'ee aussi rendu sonore, est un vaste sujet 'a la croisée de multiples disciplines : informatique, acoustique et 'électroacoustique, traitement du signal, musique, calcul géométrique mais également psycho-acoustique et perception audio-visuelle. Elle regroupe trois problématiques principales: synthèse et contrôle interactif de sons, simulation des effets de propagation du son dans l'environnement et enfin, perception et restitution spatiale aux oreilles de l'auditeur. Historiquement, ces trois problématiques émergent de travaux en acoustique architecturale, acoustique musicale et psycho-acoustique. Toutefois une différence fondamentale entre rendu sonore pour la réalité virtuelle et acoustique réside dans l'interaction multimodale et dans l'efficacité des algorithmes devant être mis en œuvre pour des applications interactives. Ces aspects importants contribuent 'a en faire un domaine 'a part qui prend une importance croissante, tant dans le milieu de l'acoustique que dans celui de la synthèse d'image/réalité virtuelle.
2

Perception-Based Optimization of Sound Projectors

Wühle, Tom 31 May 2022 (has links)
This thesis deals with optimization of sound projectors, based on knowledge on the auditory perception. In sound projection it is desired that the lagging projected sound dominates the localization. One of the most limiting factors here is the leading direct sound, which, however, can only be reduced to a limited extent since the focusing capabilities of sound projectors are physically limited. In order to enable the perception-based optimization, it was therefore essential to gain an understanding of the perceptual role of the direct sound in achieving localization dominance of the projected sound, and which perception-based requirements for sound projection result from this role. A review of existing literature on the perception in scenarios with leading and lagging sound revealed that further insights into lag localization dominance were needed to this end. These insights were gained by conducting several psychoacoustic investigations in an anechoic chamber, reproducing the sounds via individual loudspeakers. Lag localization dominance seemed to be strongly influenced by the temporal characteristics of the playback signal. Afterwards, comprehensive perception-based requirements for sound projection were derived and their consequences for the design of sound projectors were discussed. On this basis, a method for the perception-based optimization was developed with the goal to reduce the influence of the direct sound on localization. This method was named localization masking. Localization masking is based on the additional generation of one or more sounds arriving earlier and from another direction than the direct sound at the position of the listener. An investigation under laboratory conditions, using cascaded lead-lag pairs representing the sounds involved, suggested that localization masking has the potential to achieve that goal. Localization masking enabled the initial lag, representing the projected sound, to dominate the localization up to a 7 dB higher level of the initial lead, representing the direct sound. Finally, localization masking was investigated under realistic conditions. Localization masking was applied to real sound projectors in a real room and proved to work. Localization masking enabled a given projector to be effectively used with a playback signal that requires stronger focusing capabilities. Furthermore, localization masking enabled a projector with less strong focusing capabilities to be effectively used with a given playback signal.

Page generated in 0.0886 seconds