• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing A Spatial Interface For Information Visualization And Management In A Crisis Response Scenario

Costello, Anthony 01 January 2007 (has links)
The focus of this study was to investigate how a spatial interface can be effectively utilized to support information presentation and information integration via human-centric data visualization, leading to decreased cognitive load, more accurate situation awareness, and subsequently, improved task performance. In high tempo, information intensive environments like those managed by an emergency operations center (EOC), information organization tools are essential. Though users can be trained to use conventional email software applications efficiently, the constraints of the information management paradigms inherent to conventional systems may limit a user's ability to gather context and create an accurate picture of the situation. It is possible that new data visualization techniques and information management paradigms may improve a user's performance far beyond these limits. To address these issues, theories regarding information management, cognitive workload and data visualization paradigms were explored and applied to create a software prototype spatial interface. This study focused on how an individual member of an EOC would need to collect and organize incoming incident reports (e.g., emails) for the purpose of quick analysis and integration. The operator then used this information to build a picture of the event or events taking place in their sphere of influence. Performance metrics were applied to determine whether or not an individual could perform faster and more accurately with the Incident Report Visual Organizer (IRVO) prototype software interface as opposed to a conventional interface (Microsoft Outlook). The findings from this exploratory evaluation are discussed, as well as the potential implications of utilizing spatial interfaces to manage information in dynamic environments.
2

Human Interfaces for Cooperative Control of Multiple Vehicle Systems

Sun, Jisang 20 March 2006 (has links) (PDF)
This thesis presents a human interface which helps users efficiently allocate multiple unmanned ground vehicles (UGVs) cooperating to accomplish timing-sensitive missions in an urban environment. The urban environment consists of obstacles and a hazardous region. The obstacles represent a "no-go zone" while the hazardous region represents a high-risk area. The main object of this problem is to minimize the team operational cost while satisfying timing constraints. Operational costs for individual vehicles are based on risk and power consumption, and are calculated using path length and vehicle velocity. In this thesis, three types of timing constraints are considered: simultaneous arrival, tight sequential arrival, and loose sequential arrival. Coordination variables and functions are the strategy by which both temporal and spatial information is used to achieve cooperative timing at a minimum cost. Specifically, coordination variables and functions are used to plan trajectories for a team of UGVs that satisfy timing constraints. The importance of properly representing information to users, allowing them to make efficient decisions, is also discussed. Four different control interfaces (temporal, spatial, cost, and coordination variable/function control) were tested. A full factorial design of experiments was performed with response time, workload, and quality of decision as metrics used to evaluate the quality and effectiveness of each interface. Based on the results of this experiment, a final graphical user interface (GUI) was designed and is described. It incorporates a combination of coordination variable/function control and cost control. This GUI is capable of planning paths for vehicles based on cooperative timing constraints and enables users to make high quality decisions in deploying a group of vehicles.

Page generated in 0.072 seconds