1 |
The influence of seabird-derived nutrients on island ecosystems in the oligotrophic marine waters of south-western AustraliaHARRISON, Sofie, sofieh@student.ecu.edu.au January 2006 (has links)
Nutrient inputs from productive marine environments have been shown to directly and indirectly subsidise primary producers and consumers in terrestrial ecosystems (e.g. Polis and Hurd 1995; 1996; Anderson and Polis 1998; 1999). But does this theory hold true on islands surrounded by oligotrophic waters, which account for a significant proportion of the marine environment? The aim of the present study was to examine the applicability of the spatial subsidisation hypotheses proposed by Polis and his co-authors to an oligotrophic system in south-western region of Western Australia. These aims were achieved by comparing soil and plant nutrients, and the nitrogen stable isotope signatures of soil, plants, detritus and invertebrates in areas with (islands) and without (mainland sites) inputs from seabirds. In addition, the responses of plant nutrients and vegetation assemblages to guano additions were examined in a controlled field experiment.
|
2 |
The population dynamics of a riparian spider: interactive effects of flow-related disturbance on cross-ecosystem subsidies and spider habitatGreenwood, Michelle Joanne January 2007 (has links)
The transfer of prey resources between ecosystems can have dramatic consequences for both recipient and donor systems by altering food web stability and the likelihood of trophic effects cascading across the ecosystem boundary. Landscape-scale factors influence the importance, direction and magnitude of energy flows, but may also alter the ability of consumer organisms to respond to spatio-temporal changes in allochthonous prey availability. Here, I used flood and drying disturbance gradients to investigate interactions between these two processes on populations of a riparian fishing spider Dolomedes aquaticus (Pisauridae). The abundance of aquatic insects with a winged adult stage, a major component of the diet of D. aquaticus, was markedly higher at less flood-prone rivers and declined with increasing flood disturbance. It was expected that spider populations would be largest at these stable rivers where the aquatic prey abundance was highest. However, a habitat (loose, unembedded riverbank rocks) manipulation revealed that the lack of scouring floods at these sites led to habitat-limited populations, preventing response to the increased prey resource. In fact a peak shaped relationship of spider biomass and abundance was found, with the largest spider populations at intermediately disturbed rivers. In addition, patchy habitat availability was the most likely cause of the small scale (4 m2) aggregation of spiders seen at the most stable and disturbed rivers. These patterns were also associated with strong interactions between the spiders. Stable isotope analysis of field collected spiders and an experimental manipulation of spider densities and food availability indicated that cannibalism rates were likely to be significantly higher at stable and disturbed rivers than those intermediate on the disturbance gradient. Differences in D. aquaticus population size structure and life history traits across the flood disturbance gradient were driven by interactions between resource availability, environmental stability and cannibalism rates. To separate the effects of habitat availability and aquatic prey abundance I used drying rivers, as the amount of aquatic insect prey alters as the water recedes. Desiccation mortality and low aquatic prey biomass most likely caused the spiders' spatial distribution and size class structure to alter in drying river reaches, potentially also leading to differences in cannibalism rates. Overall, cross-ecosystem transfers of prey had large impacts on the distribution, cannibalism rates and life history traits of D. aquaticus but their effects were modified by the nature of the ecosystem boundary. Thus river flow regime controlled the magnitude of the subsidy and its use by a consumer. Hence, cross-ecosystem subsidies will not always lead to larger consumer populations and consumer responses will depend on interactions between large-scale processes.
|
3 |
The population dynamics of a riparian spider: interactive effects of flow-related disturbance on cross-ecosystem subsidies and spider habitatGreenwood, Michelle Joanne January 2007 (has links)
The transfer of prey resources between ecosystems can have dramatic consequences for both recipient and donor systems by altering food web stability and the likelihood of trophic effects cascading across the ecosystem boundary. Landscape-scale factors influence the importance, direction and magnitude of energy flows, but may also alter the ability of consumer organisms to respond to spatio-temporal changes in allochthonous prey availability. Here, I used flood and drying disturbance gradients to investigate interactions between these two processes on populations of a riparian fishing spider Dolomedes aquaticus (Pisauridae). The abundance of aquatic insects with a winged adult stage, a major component of the diet of D. aquaticus, was markedly higher at less flood-prone rivers and declined with increasing flood disturbance. It was expected that spider populations would be largest at these stable rivers where the aquatic prey abundance was highest. However, a habitat (loose, unembedded riverbank rocks) manipulation revealed that the lack of scouring floods at these sites led to habitat-limited populations, preventing response to the increased prey resource. In fact a peak shaped relationship of spider biomass and abundance was found, with the largest spider populations at intermediately disturbed rivers. In addition, patchy habitat availability was the most likely cause of the small scale (4 m2) aggregation of spiders seen at the most stable and disturbed rivers. These patterns were also associated with strong interactions between the spiders. Stable isotope analysis of field collected spiders and an experimental manipulation of spider densities and food availability indicated that cannibalism rates were likely to be significantly higher at stable and disturbed rivers than those intermediate on the disturbance gradient. Differences in D. aquaticus population size structure and life history traits across the flood disturbance gradient were driven by interactions between resource availability, environmental stability and cannibalism rates. To separate the effects of habitat availability and aquatic prey abundance I used drying rivers, as the amount of aquatic insect prey alters as the water recedes. Desiccation mortality and low aquatic prey biomass most likely caused the spiders' spatial distribution and size class structure to alter in drying river reaches, potentially also leading to differences in cannibalism rates. Overall, cross-ecosystem transfers of prey had large impacts on the distribution, cannibalism rates and life history traits of D. aquaticus but their effects were modified by the nature of the ecosystem boundary. Thus river flow regime controlled the magnitude of the subsidy and its use by a consumer. Hence, cross-ecosystem subsidies will not always lead to larger consumer populations and consumer responses will depend on interactions between large-scale processes.
|
4 |
The effects of stream productivity on aquatic-terrestrial linkagesBurdon, Francis John January 2004 (has links)
The potential relationship between riparian arachnids and aquatic insect productivity was assessed in forest streams throughout the central South Island of New Zealand. Initially, a survey was conducted of thirty seven, first-third order forest streams. Streams were selected to represent a range of benthic invertebrate standing crops (as a surrogate measure of "productivity") from Banks Peninsula streams with relatively high benthic invertebrate densities to acid mine drainage streams near Reefton that were almost devoid of aquatic life. At each site benthic invertebrate densities and biomass were measured in riffle habitats and adjacent gravel bars were sampled for terrestrial invertebrates. At a sub-set of 16 sites, a 20 metre longitudinal web-building spider survey was conducted along each bank of the stream. As an additional component, a 20 metre transect starting at the stream margin and running perpendicularly into the forest was used to survey the density of web-building spiders with increasing distance from the stream. Results from the survey of in-situ stream insect biomass and gravel bar invertebrates showed a strong relationship between aquatic insect biomass and the biomass of riparian arachnids (R2 = 0.42, P < 0.001) having accounted for potentially confounding factors such as stream size, elevation, substrate and disturbance. The 20 metre longitudinal survey showed that streams with the highest in-situ insect biomass had significantly higher densities of web-building spiders along their banks (R2 = 0.28, P < 0.05), having accounted for potential confounding variables of elevation, habitat architecture and stream and channel width. The stream to forest survey showed a strong exponential decay in web-building spider densities with increasing distance from the stream (R2 = 0.96, P < 0.0001). Regardless of stream productivity web-building spiders were most abundant at the stream margins and rapidly declined to very low densities 20 metres from the stream. In order to further test the relationship between riparian web-building spider densities and stream insect productivity, a stream fertilization experiment was conducted on six first-second order streams in the Maimai experimental catchment, Reefton. Three streams were enriched by the addition of a fertiliser solution mainly consisting of sodium nitrate for seven months, and the other three streams were used as controls. Water chemistry, benthic invertebrate communities, emerging aquatic adults, and the densities of web-building spiders along the stream corridor and in the forest were monitored in three seasons (spring, summer and autumn) over the course of the nutrient-addition. By the end of the experiment, conductivity was significantly higher in nutrient-addition streams than in the control streams (F = 80.5, P < 0.001), but chlorophyll concentrations showed no significant differences between treatments. Both benthic mayfly densities (F = 6.15, P < 0.05) and the biomass of adult aquatic dipterans (Chironomidae, Simuliidae) (F = 9.25, P < 0.01) were significantly higher in nutrient-addition streams in the last sampling round. Spiders recorded from intercept traps indicated that by the end of the experiment spider activity was significantly higher within 2.5 metres of the nutrient-addition streams (F = 5.70, P < 0.01). However, seasonal densities of web-building spiders along the stream margin and in the forest decreased with no significant differences observed between nutrient-addition and control streams. The results from these studies indicate that adult insects emerging from streams represent an important source of prey that could influence the biomass and abundance of riparian arachnids. Additionally, the results imply that stream productivity and size could mediate the strength of the interaction between riparian and stream habitats. Moreover, feedback mechanisms present in both systems could have implications for such interactions. The elevated densities of web-building spiders observed at the stream margin led to the proposal of the "Highway Robber" hypothesis. This hypothesis suggests that such higher densities of spiders are the result of increased insect activity along the stream corridor: the emergence of adult aquatic insects was predicted to vary less over temporal and spatial scales than that of terrestrial insects due to the poorly synchronized life histories in many New Zealand stream insects. I conclude by suggesting that there are numerous anthropocentric perturbations such as loss of heterogeneity, introduced species, pollution and habitat degradation that could undermine and decouple the intimate linkages between aquatic and terrestrial ecosystems.
|
5 |
The effects of stream productivity on aquatic-terrestrial linkagesBurdon, Francis John January 2004 (has links)
The potential relationship between riparian arachnids and aquatic insect productivity was assessed in forest streams throughout the central South Island of New Zealand. Initially, a survey was conducted of thirty seven, first-third order forest streams. Streams were selected to represent a range of benthic invertebrate standing crops (as a surrogate measure of "productivity") from Banks Peninsula streams with relatively high benthic invertebrate densities to acid mine drainage streams near Reefton that were almost devoid of aquatic life. At each site benthic invertebrate densities and biomass were measured in riffle habitats and adjacent gravel bars were sampled for terrestrial invertebrates. At a sub-set of 16 sites, a 20 metre longitudinal web-building spider survey was conducted along each bank of the stream. As an additional component, a 20 metre transect starting at the stream margin and running perpendicularly into the forest was used to survey the density of web-building spiders with increasing distance from the stream. Results from the survey of in-situ stream insect biomass and gravel bar invertebrates showed a strong relationship between aquatic insect biomass and the biomass of riparian arachnids (R2 = 0.42, P < 0.001) having accounted for potentially confounding factors such as stream size, elevation, substrate and disturbance. The 20 metre longitudinal survey showed that streams with the highest in-situ insect biomass had significantly higher densities of web-building spiders along their banks (R2 = 0.28, P < 0.05), having accounted for potential confounding variables of elevation, habitat architecture and stream and channel width. The stream to forest survey showed a strong exponential decay in web-building spider densities with increasing distance from the stream (R2 = 0.96, P < 0.0001). Regardless of stream productivity web-building spiders were most abundant at the stream margins and rapidly declined to very low densities 20 metres from the stream. In order to further test the relationship between riparian web-building spider densities and stream insect productivity, a stream fertilization experiment was conducted on six first-second order streams in the Maimai experimental catchment, Reefton. Three streams were enriched by the addition of a fertiliser solution mainly consisting of sodium nitrate for seven months, and the other three streams were used as controls. Water chemistry, benthic invertebrate communities, emerging aquatic adults, and the densities of web-building spiders along the stream corridor and in the forest were monitored in three seasons (spring, summer and autumn) over the course of the nutrient-addition. By the end of the experiment, conductivity was significantly higher in nutrient-addition streams than in the control streams (F = 80.5, P < 0.001), but chlorophyll concentrations showed no significant differences between treatments. Both benthic mayfly densities (F = 6.15, P < 0.05) and the biomass of adult aquatic dipterans (Chironomidae, Simuliidae) (F = 9.25, P < 0.01) were significantly higher in nutrient-addition streams in the last sampling round. Spiders recorded from intercept traps indicated that by the end of the experiment spider activity was significantly higher within 2.5 metres of the nutrient-addition streams (F = 5.70, P < 0.01). However, seasonal densities of web-building spiders along the stream margin and in the forest decreased with no significant differences observed between nutrient-addition and control streams. The results from these studies indicate that adult insects emerging from streams represent an important source of prey that could influence the biomass and abundance of riparian arachnids. Additionally, the results imply that stream productivity and size could mediate the strength of the interaction between riparian and stream habitats. Moreover, feedback mechanisms present in both systems could have implications for such interactions. The elevated densities of web-building spiders observed at the stream margin led to the proposal of the "Highway Robber" hypothesis. This hypothesis suggests that such higher densities of spiders are the result of increased insect activity along the stream corridor: the emergence of adult aquatic insects was predicted to vary less over temporal and spatial scales than that of terrestrial insects due to the poorly synchronized life histories in many New Zealand stream insects. I conclude by suggesting that there are numerous anthropocentric perturbations such as loss of heterogeneity, introduced species, pollution and habitat degradation that could undermine and decouple the intimate linkages between aquatic and terrestrial ecosystems.
|
6 |
Intertidal resource cultivation over millennia structures coastal biodiversityCox, Kieran D. 22 December 2021 (has links)
Cultivation of marine ecosystems began in the early Holocene and has contributed vital resources to humans over millennia. Several more recent cultivation practices, however, erode biodiversity. Emerging lines of evidence indicate that certain resource management practices may promote favourable ecological conditions. Here, I use the co-occurrence of 24 First Nations clam gardens, shellfish aquaculture farms, and unmodified clam beaches to test several hypotheses concerning the ecological implications of managing intertidal bivalve populations. To so do, in 2015 and 2016, I surveyed epifaunal (surface) and bivalve communities and quantified each intertidal sites’ abiotic conditions, including sediment characteristics and substrate composition. In 2017, I generated three-dimensional models of each site using structure-from-motion photogrammetry and measured several aspects of habitat complexity. Statistical analyses use a combination of non-parametric multivariate statistics, multivariate regression trees, and random forests to quantify the extent to which the intertidal resource cultivation structures nearshore biodiversity
Chapter 1 outlines a brief history of humanity's use of marine resources, the transition from extracting to cultivating aquatic taxa, and the emergences of the northeast Pacific’s most prevalent shellfish cultivation practices: clam gardens and shellfish farms.
Chapter 2 evaluates the ability of epifaunal community assessment methods to capture species diversity by conducting a paired field experiment using four assessment methods: photo-quadrat, point-intercept, random subsampling, and full-quadrat assessments. Conducting each method concurrently within multiple intertidal sites allowed me to quantify the implications of varying sampling areas, subsampling, and photo surveys on detecting species diversity, abundance, and sample- and coverage-based biodiversity metrics. Species richness, density, and sample-based rarefaction varied between methods, despite assessments occurring at the same locations, with photo-quadrats detecting the lowest estimates and full-quadrat assessments the highest. Abundance estimates were consistent among methods, supporting the use of extrapolation. Coverage-based rarefaction and extrapolation curves confirmed that these dissimilarities were due to differences between the methods, not the sample completeness. The top-performing method, random subsampling, was used to conduct Chapter 4’s surveys.
Chapter 3 examines the connection between shellfish biomass and the ecological conditions clam garden and shellfish farms foster. First, I established the methodological implications of varying sediment volume on the detection of bivalve diversity, abundance, shell length, and sample- and coverage-based biodiversity metrics. Similar to Chapter 2, this examination identified the most suitable method, which I used during the 2015 and 2016 bivalve surveys. The analyses quantified several interactions between each sites’ abiotic conditions and biological communities including, the influence of substrate composition, sediment characteristics, and physical complexity on bivalve communities, and if bivalve richness and habitat complexity facilitates increases in bivalve biomass.
Chapter 4 quantifies the extent to which managing intertidal bivalves enhance habitat complexity, fostering increased diversity in the epifaunal communities. This chapter combines 2015, 2016, and 2017 surveys of the sites' epifaunal communities and habitat complexity metrics, including fractal dimension at four-resolutions and linear rugosity. Clam gardens enhance fine- and broad-scale complexity, while shellfish farms primarily increase fine-scale complexity, allowing for insights into parallel and divergent community responses.
Chapter 5 presents an overview of shellfish as a marine subsidy to coastal terrestrial ecosystems along the Pacific coast of North America. I identified the vectors that transport shellfish-derived nutrients into coastal terrestrial environments, including birds, mammals, and over 13,000 years of marine resource use by local people. I also examined the abundance of shellfish-derived nutrients transported, the prolonged persistence of shellfish subsidies once deposited within terrestrial ecosystems, and the ecological implications for recipient ecosystems.
Chapter 6 contextualizes the preceding chapters relative to the broader literature. The objective is to provide insight into how multiple shellfish cultivation systems influence biological communities, how ecological mechanisms facilitate biotic responses, and summarize the implications for conservation planning, Indigenous resource sovereignty, and biodiversity preservation. It also explores future work, specifically the need to support efforts that pair Indigenous knowledge, and ways of knowing with Western scientific insights to address conservation challenges. / Graduate / 2022-12-13
|
7 |
Operationalizing the telecoupling framework for migratory species using the spatial subsidies approach to examine ecosystem services provided by Mexican free-tailed batsLópez-Hoffman, Laura, Diffendorfer, Jay, Wiederholt, Ruscena, Bagstad, Kenneth J., Thogmartin, Wayne E., McCracken, Gary, Medellin, Rodrigo L., Russell, Amy, Semmens, Darius J. January 2017 (has links)
Drivers of environmental change in one location can have profound effects on ecosystem services and human well-being in distant locations, often across international borders. The telecoupling provides a conceptual framework for describing these interactions-for example, locations can be defined as sending areas (sources of flows of ecosystem services, energy, or information) or receiving areas (recipients of flows). However, the ability to quantify feedbacks between ecosystem change in one area and societal benefits in other areas requires analytical approaches. We use spatial subsidies-an approach developed to measure the degree to which a migratory species' ability to provide services in one location depends on habitat in another location-as an example of how telecoupling can be operationalized. Using the cotton pest control and ecotourism services of Mexican free-tailed bats as an example, we determined that of the 16 states in the United States and Mexico where the species resides, three states (Texas, New Mexico, and Colorado) are receiving areas, while the rest of the states are sending areas. In addition, the magnitude of spatial subsidy can be used as an indicator of the degree to which different locations are telecoupled to other locations. In this example, the Mexican free-tailed bat ecosystem services to cotton production and ecotourism in Texas and New Mexico are heavily dependent on winter habitat in four states in central and southern Mexico. In sum, spatial subsidies can be used to operationalize the telecoupling conceptual framework by identifying sending and receiving areas, and by indicating the degree to which locations are telecoupled to other locations.
|
Page generated in 0.1148 seconds