• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Design of a Digital Spatio-temporal Filter for Image Processing

Lee, Yu-Lun 25 July 2010 (has links)
Along with rapid development of information technology, all kinds of algorithms have been presented, to achieve significant progress in image tracking. Most methods tend to identify features of moving objects, and filter out background components which do not meet these features. This thesis uses a spatio-temporal planar-resonant filter to accomplish moving object tracking tasks. Under the condition without prior knowledge about features of moving objects, choosing appropriate filter¡¦s parameters is able to enhance the object with a certain moving speed and reduce intensity of objects with different velocities. Nevertheless, this filter cannot solve the problem background filtering. Therefore, a homomorphic filtering with fast optical flow estimation is implemented to identify and separate the background and moving components in dynamic images. This thesis also considers different 3-D bandwidth parameters. To develop a systematic approach to design filter¡¦s parameters for actual implementations.
2

Moving Object Tracking Based on Spatiotemporal Domain Method

Ting, Shih-hsiang 13 July 2008 (has links)
As a result of everlasting developments in multimedia technologies, all kinds of objects tracking theory using machine vision or image process methods have been proposed. Most of the methods are based on shape of the object. For this reason, the profile of the tracked object must be known in advance. In many situations, we expect to track the object whose shape is unknown but speed or direction is explicit. For instance, speed or moving direction of the object is known. This thesis presents a spatio-temporal tracking technique, which extracts image information depending on speed of the moving object regardless of its shape. Furthermore, combination of the proposed method in spatio-temporal domain and the optical flow scheme makes the whole tracking system even more robust.

Page generated in 0.2135 seconds