• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Liquid in situ analytical TEM : technique development and applications to austenitic stainless steel

Schilling, Sibylle January 2017 (has links)
Environmentally-assisted cracking (EAC) phenomena affect the in-service behaviour of austenitic stainless steels in nuclear power plants. EAC includes such degradation phenomena as Stress Corrosion Cracking (SCC) and Corrosion Fatigue (CF). Factors affecting EAC include the material type, microstructure, environment, and stress. This is an important degradation issue for both current and Gen III+ light water reactors, particularly as nuclear power plant lifetimes are extended ( > 60 years). Thus, it is important to understand the behaviour of the alloys used in light water reactors, and phenomena such as SCC to avoid failures. Although there is no agreement on the mechanism(s) of SCC, the importance of localized electrochemical reactions at the material surface is widely recognised. Considerable research has been performed on SCC and CF crack growth, but the initiation phenomena are not fully understood. In this project, novel in situ analytical TEM techniques have been developed and applied to explore localised reactions in Type 304 austenitic stainless steel. In situ transmission electron microscopy has become an increasingly important and dynamic research area in materials science with the advent of unique microscope platforms and a range of specialized in situ specimen holders. In metals research, the ability to image and perform X-ray energy dispersive spectroscopy (XED) analyses of metals in liquids are particularly important for detailed study of the metal-environment interactions with specific microstructural features. To further facilitate such studies a special hybrid specimen preparation technique involving electropolishing and FIB extraction has been developed in this thesis to enable metal specimens to be examined in the liquid cell TEM specimen holder using both distilled H2O and H2SO4 solutions. Furthermore, a novel electrode configuration has been designed to permit the localized electrochemical measurement of electron-transparent specimens in the TEM. These novel approaches have been benchmarked by extensive ex situ experiments, including both conventional electrochemical measurements and microcell measurements. The results are discussed in terms of validation of in situ test data as well as the role of the electron beam in the experiments. In situ liquid cell TEM experiments have also explored the localized dissolution of MnS inclusions in H2O, and correlated the behaviour with ex situ experiments. Based on the research performed in this thesis, in situ liquid cell and in situ electrochemical cell experiments can be used to study nanoscale reactions pertaining to corrosion and localized dissolution leading to "precursor" events for subsequent EAC phenomena.
2

3D Thermal Mapping of Cone Calorimeter Specimen and Development of a Heat Flux Mapping Procedure Utilizing an Infrared Camera

Choi, Keum-Ran 02 February 2005 (has links)
The Cone Calorimeter has been used widely for various purposes as a bench - scale apparatus. Originally the retainer frame (edge frame) was designed to reduce unrepresentative edge burning of specimens. In general, the frame has been used in most Cone tests without enough understanding of its effect. It is very important to have one - dimensional (1D) conditions in order to estimate thermal properties of materials. It has been implicitly assumed that the heat conduction in the Cone Calorimeter is 1D using the current specimen preparation. However, the assumption has not been corroborated explicitly to date. The first objective of this study was to evaluate the heat transfer behavior of a Cone specimen by examining its three - dimensional (3D) heat conduction. It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full - scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full - scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The second objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment is performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.
3

The effect of prior austenite grain size on the machinability of a pre-hardened mold steel. : Measurement of average grain size using experimental methods and empirical models. / Machinability of pre-hardened mold steels and the effect of prior-austenite grain size,hardness,retained austenite content and effect of work hardening. : Chemical etchants used for revealing prior austenite grains.

Irshad, Muhammad Aatif January 2011 (has links)
The use of pre-hardened mold steels has increased appreciably over the years; more than 80% of the plastic mold steels are used in pre-hardened condition. These steels are delivered to the customer in finished state i.e. there is no need of any post treatment. With hardness around ~40HRC, they have properties such as good polishability, good weldability, corrosion resistance and thermal conductivity. Machinability is a very important parameter in pre-hardened mold steels as it has a direct impact on the cost of the mold. In normal machining operations involving intricate or near net shapes, machining constitutes around 60% of the total mold cost. Efforts are underway to explore every possible way to reduce costs associated with machining and to make production more economical. All the possible parameters which are considered to affect the machinability are being investigated by the researchers. This thesis work focuses on the effect of prior austenite grain size on the machinability of pre-hardened mold steel (Uddeholm Nimax).  Austenitizing temperatures and holding times were varied to obtain varying grain sized microstructures in different samples of the same material. As it was difficult to delineate prior-austenite grain boundaries, experimental and empirical methods were employed to obtain reference values. These different grain sized samples were thereafter subjected to machining tests, using two sets of cutting parameters. Maximum flank wear depth=0.2mm was defined for one series of test which were more akin to rough machining, and machining length of 43200mm or maximum wear depth=0.2mm were defined for second series of tests which were similar to finishing machining. The results were obtained after careful quantative and qualitative analysis of cutting tools. The results obtained for Uddeholm Nimax seemed to indicate that larger grain sized material was easier to machine. However, factors such as retained austenite content and work hardening on machined surface, which lead to degradation of machining operations were also taken into consideration. Uddeholm Nimax showed better machinability in large grained samples as retained austenite(less than 2%) content was minimal in the large grained sample. Small grained sample in Uddeholm Nimax had a higher retained austenite (7+2%) which resulted in degradation of machining operation and a lesser cutting tool life.

Page generated in 0.1443 seconds