• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ergodic theory of mulitidimensional random dynamical systems

Hsieh, Li-Yu Shelley 13 November 2008 (has links)
Given a random dynamical system T constructed from Jablonski transformations, consider its Perron-Frobenius operator P_T. We prove a weak form of the Lasota-Yorke inequality for P_T and thereby prove the existence of BV- invariant densities for T. Using the Spectral Decomposition Theorem we prove that the support of an invariant density is open a.e. and give conditions such that the invariant density for T is unique. We study the asymptotic behavior of the Markov operator P_T, especially when T has a unique absolutely continuous invariant measure (ACIM). Under the assumption of uniqueness, we obtain spectral stability in the sense of Keller. As an application, we can use Ulam's method to approximate the invariant density of P_T.

Page generated in 0.0994 seconds