• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular characterization and evolution of alpha-actinin : from protozoa to vertebrates

Virel, Ana January 2006 (has links)
<p>alpha-actinin is a ubiquitous protein found in most eukaryotic organisms. The ability to form dimers allows alpha-actinin to cross-link actin in different structures. In muscle cells alpha-actinin is found at the Z-disk of sarcomeres. In non-muscle cells alpha-actinin is found in zonula adherens or focal adhesion sites where it can bind actin to the plasma membrane.</p><p>alpha-actinin is the shortest member of the spectrin superfamily of proteins which also includes spectrin, dystrophin and utrophin. Several hypotheses suggest that alpha-actinin is the ancestor of this superfamily.</p><p>The structure of alpha-actinin in higher organisms has been well characterized consisting of three main domains: an N-terminal actin-binding domain with two calponin homology domains, a central rod domain with four spectrin repeats and a C-terminal calcium-binding domain. Data mining of genomes from diverse organisms has made possible the discovery of new and atypical alpha-actinin isoforms that have not been characterized yet.</p><p>Invertebrates contain a single alpha-actinin isoform, whereas most of the vertebrates contain four. These four isoforms can be broadly classified in two groups, muscle isoforms and non-muscle isoforms. Muscle isoforms bind actin in a calcium independent manner whereas non-muscle isoforms bind actin in a calcium-dependent manner.</p><p>Some of the protozoa and fungi isoforms are atypical in that they contain fewer spectrin repeats in the rod domain. We have purified and characterized two ancestral alpha-actinins from the parasite Entamoeba histolytica. Our results show that despite the shorter rod domain they conserve the most important functions of modern alpha-actinin such as actin-bundling formation and calcium-binding regulation. Therefore it is suggested that they are genuine alpha-actinins.</p><p>The phylogenetic tree of alpha-actinin shows that the four different alpha-actinin isoforms appeared after the vertebrate-invertebrate split as a result of two rounds of genome duplication. The atypical alpha-actinin isoforms are placed as the most divergent isoforms suggesting that they are ancestral isoforms. We also propose that the most ancestral alpha-actinin contained a single repeat in its rod domain. After a first intragene duplication alpha-actinin with two spectrin repeats were created and a second intragene duplication gave rise to modern alpha-actinins with four spectrin repeats.</p>
2

Molecular characterization and evolution of alpha-actinin : from protozoa to vertebrates

Virel, Ana January 2006 (has links)
alpha-actinin is a ubiquitous protein found in most eukaryotic organisms. The ability to form dimers allows alpha-actinin to cross-link actin in different structures. In muscle cells alpha-actinin is found at the Z-disk of sarcomeres. In non-muscle cells alpha-actinin is found in zonula adherens or focal adhesion sites where it can bind actin to the plasma membrane. alpha-actinin is the shortest member of the spectrin superfamily of proteins which also includes spectrin, dystrophin and utrophin. Several hypotheses suggest that alpha-actinin is the ancestor of this superfamily. The structure of alpha-actinin in higher organisms has been well characterized consisting of three main domains: an N-terminal actin-binding domain with two calponin homology domains, a central rod domain with four spectrin repeats and a C-terminal calcium-binding domain. Data mining of genomes from diverse organisms has made possible the discovery of new and atypical alpha-actinin isoforms that have not been characterized yet. Invertebrates contain a single alpha-actinin isoform, whereas most of the vertebrates contain four. These four isoforms can be broadly classified in two groups, muscle isoforms and non-muscle isoforms. Muscle isoforms bind actin in a calcium independent manner whereas non-muscle isoforms bind actin in a calcium-dependent manner. Some of the protozoa and fungi isoforms are atypical in that they contain fewer spectrin repeats in the rod domain. We have purified and characterized two ancestral alpha-actinins from the parasite Entamoeba histolytica. Our results show that despite the shorter rod domain they conserve the most important functions of modern alpha-actinin such as actin-bundling formation and calcium-binding regulation. Therefore it is suggested that they are genuine alpha-actinins. The phylogenetic tree of alpha-actinin shows that the four different alpha-actinin isoforms appeared after the vertebrate-invertebrate split as a result of two rounds of genome duplication. The atypical alpha-actinin isoforms are placed as the most divergent isoforms suggesting that they are ancestral isoforms. We also propose that the most ancestral alpha-actinin contained a single repeat in its rod domain. After a first intragene duplication alpha-actinin with two spectrin repeats were created and a second intragene duplication gave rise to modern alpha-actinins with four spectrin repeats.

Page generated in 0.0483 seconds