• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Collaborative spectrum sensing in cognitive radio networks

Sun, Hongjian January 2011 (has links)
The radio frequency (RF) spectrum is a scarce natural resource, currently regulated by government agencies. With the explosive emergence of wireless applications, the demands for the RF spectrum are constantly increasing. On the other hand, it has been reported that localised temporal and geographic spectrum utilisation efficiency is extremely low. Cognitive radio is an innovative technology designed to improve spectrum utilisation by exploiting those spectrum opportunities. This ability is dependent upon spectrum sensing, which is one of most critical components in a cognitive radio system. A significant challenge is to sense the whole RF spectrum at a particular physical location in a short observation time. Otherwise, performance degrades with longer observation times since the lagging response to spectrum holes implies low spectrum utilisation efficiency. Hence, developing an efficient wideband spectrum sensing technique is prime important. In this thesis, a multirate asynchronous sub-Nyquist sampling (MASS) system that employs multiple low-rate analog-to-digital converters (ADCs) is developed that implements wideband spectrum sensing. The key features of the MASS system are, 1) low implementation complexity, 2) energy-efficiency for sharing spectrum sensing data, and 3) robustness against the lack of time synchronisation. The conditions under which recovery of the full spectrum is unique are presented using compressive sensing (CS) analysis. The MASS system is applied to both centralised and distributed cognitive radio networks. When the spectra of the cognitive radio nodes have a common spectral support, using one low-rate ADC in each cognitive radio node can successfully recover the full spectrum. This is obtained by applying a hybrid matching pursuit (HMP) algorithm - a synthesis of distributed compressive sensing simultaneous orthogonal matching pursuit (DCS-SOMP) and compressive sampling matching pursuit (CoSaMP). Moreover, a multirate spectrum detection (MSD) system is introduced to detect the primary users from a small number of measurements without ever reconstructing the full spectrum. To achieve a better detection performance, a data fusion strategy is developed for combining sensing data from all cognitive radio nodes. Theoretical bounds on detection performance are derived for distributed cognitive radio nodes suffering from additive white Gaussian noise (AWGN), Rayleigh fading, and log-normal fading channels. In conclusion, MASS and MSD both have a low implementation complexity, high energy efficiency, good data compression capability, and are applicable to distributed cognitive radio networks.
2

Cooperative spectrum sensing for cognitive radio

Prawatmuang, Warit January 2013 (has links)
Cognitive Radio (CR) aims to access the wireless spectrum in an opportunistic manner while the licensed user is not using it. To accurately determine the licensed user's existence, spectrum sensing procedure is vital to CR system. Energy detection-based spectrum sensing techniques is favourable due to its simplicity and low complexity. In addition, to improve the detection performance, cooperative spectrum sensing technique exploits multi-user diversity and mitigates detection uncertainty. In this thesis, we investigate several energy detection based cooperative spectrum sensing techniques.First, the closed-form analysis for the Equal Gain Combining based Soft Decision Combining (EGC-SDC) scheme, in which all CR users forward its observation to the fusion center, is derived. In order to reduce the communication overhead between CR users and the fusion center, we proposed quantized cooperative spectrum sensing technique, in which CR users quantize its local observation before forwarding to the fusion center. Next, the Double Threshold scheme, where some users only forward its local decision while other users forward its observation, is considered and analyzed. To further reduce the communication overhead, we also proposed that quantization is applied to the users who forward its observation. Later on, three sequential cooperative spectrum sensing schemes in time-varying channel are considered. By aggregating past local observations from previous sensing slots, CR users can improve the detection performance. The Weighted Sequential Energy Detector (SED) scheme simply takes fixed number of past local observations, while the other two schemes, Two-Stage SED and Differential SED, adaptively determine the number of observations, based on its decision towards primary user's existence.Simulation results show that the analysis on EGC-SDC scheme is accurate and the quantized cooperative spectrum sensing technique can improve the performance and approach the detection performance of EGC-SDC scheme with much less bandwidth requirement. Also, the Double Threshold scheme can help improve the detection performance over the conventional technique. Furthermore, the analysis on Double Threshold provides a closed-form for the probability of false alarm and detection. Additionally, the sequential spectrum sensing schemes are shown to improve the detection performance and enable CR system to work in scenarios that the conventional technique can not accommodate.
3

Spectrum sensing based on Maximum Eigenvalue approximation in cognitive radio networks

Ahmed, A., Hu, Yim Fun, Noras, James M., Pillai, Prashant 16 July 2015 (has links)
No / Eigenvalue based spectrum sensing schemes such as Maximum Minimum Eigenvalue (MME), Maximum Energy Detection (MED) and Energy with Minimum Eigenvalue (EME) have higher spectrum sensing performance without requiring any prior knowledge of Primary User (PU) signal but the decision hypothesis used in these eigenvalue based sensing schemes depends on the calculation of maximum eigenvalue from covariance matrix of measured signal. Calculation of the covariance matrix followed by eigenspace analysis of the covariance matrix is a resource intensive operation and takes overhead time during critical process of spectrum sensing. In this paper we propose a new blind spectrum sensing scheme based on the approximation of the maximum eigenvalue using state of the art results from Random Matrix Theory (RMT). The proposed sensing scheme has been evaluated through extensive simulations on wireless microphone signals and the proposed scheme shows higher probability of detection (Pd) performance. The proposed spectrum sensing also shows higher detection performance as compared to energy detection scheme and RMT based sensing schemes such as MME and EME.
4

Enhanced energy detection based spectrum sensing in cognitive radio networks using Random Matrix Theory

Ahmed, A., Hu, Yim Fun, Noras, James M. January 2014 (has links)
No / Opportunistic secondary usage of underutilised radio spectrum is currently of great interest and the use of TV White Spaces (TVWS) has been considered for Long Term Evolution (LTE) broadband services. However, wireless microphones operating in TV bands pose a challenge to TVWS opportunistic access. Efficient and proactive spectrum sensing could prevent harmful interference between collocated devices, but existing spectrum sensing schemes such as energy detection and schemes based on Random Matrix Theory (RMT) have performance limitations. We propose a new blind spectrum sensing scheme with higher performance based on RMT supported by a new formula for the estimation of noise variance. The performance of the proposed scheme has been evaluated through extensive simulations on wireless microphone signals. The proposed scheme has also been compared to energy detection schemes, and shows higher performance in terms of the probability of false alarm (Pfa) and probability of detection (Pd).
5

Noise Variance Estimation for Spectrum Sensing in Cognitive Radio Networks

Ahmed, A., Hu, Yim Fun, Noras, James M. January 2014 (has links)
No / Spectrum sensing is used in cognitive radio systems to detect the availability of spectrum holes for secondary usage. The simplest and most famous spectrum sensing techniques are based either on energy detection or eigenspace analysis from Random Matrix Theory (RMT) such as using the Marchenko-Pastur law. These schemes suffer from uncertainty in estimating the noise variance which reduces their performance. In this paper we propose a new method to evaluate the noise variance that can eliminate the limitations of the aforementioned schemes. This method estimates the noise variance from a measurement set of noisy signals or noise-only signals. Extensive simulations show that the proposed method performs well in estimating the noise variance. Its performance greatly improves with increasing numbers of measurements and also with increasing numbers of samples taken per measurement.
6

Random matrix theory based spectrum sensing for cognitive radio networks

Ahmed, A., Hu, Yim Fun, Noras, James M., Pillai, Prashant, Abd-Alhameed, Raed, Smith, A. 05 November 2015 (has links)
No / Dynamic Spectrum Access (DSA) for secondary usage of underutilized radio spectrum is currently of great interest for radio regulatory authorities and for cellular network operators. However, the co-existence of multiple devices operating in the same bands, such as wireless microphones which also operate in TV bands, poses a challenge to DSA. Efficient and proactive spectrum sensing could prevent harmful interference between collocated devices, but existing blind spectrum sensing schemes such as energy detection and schemes based on Random Matrix Theory (RMT) have performance limitations. We propose a new blind spectrum sensing scheme for cognitive radio. The proposed scheme uses a new formula for the estimation of noise variance. The scheme has been evaluated through extensive simulations on wireless microphone signals and shows higher performance as compared to energy detection and RMT-based sensing schemes such as MME and EME. It also shows higher performance in terms of probability of detection (Pd).

Page generated in 0.1396 seconds