Spelling suggestions: "subject:"speech recognition inn multitaper babble"" "subject:"speech recognition inn multitask babble""
1 |
The Revised Speech Perception in Noise Test (R-Spin) in a Multiple Signal-to-Noise Ratio ParadigmWilson, Richard H., McArdle, Rachel, Watt, Kelly L., Smith, Sherri L. 01 September 2012 (has links)
Background: The Revised Speech Perception in Noise Test (R-SPIN; Bilger, 1984b) is composed of 200 target words distributed as the last words in 200 low-predictability (LP) and 200 high-predictability (HP) sentences. Four list pairs, each consisting of two 50-sentence lists, were constructed with the target word in a LP and HP sentence. Traditionally the R-SPIN is presented at a signal-to-noise ratio (SNR, S/N) of 8 dB with the listener task to repeat the last word in the sentence. Purpose: The purpose was to determine the practicality of altering the R-SPIN format from a single SNR paradigm into a multiple SNR paradigm from which the 50% points for the HP and LP sentences can be calculated. Research Design: Three repeated measures experiments were conducted. Study Sample: Forty listeners with normal hearing and 184 older listeners with pure-tone hearing loss participated in the sequence of experiments. Data Collection and Analysis: The R-SPIN sentences were edited digitally (1) to maintain the temporal relation between the sentences and babble, (2) to establish the SNRs, and (3) to mix the speech and noise signals to obtain SNRs between -1 and 23 dB. All materials were recorded on CD and were presented through an earphone with the responses recorded and analyzed at the token level. For reference purposes the Words-in-Noise Test (WIN) was included in the first experiment. Results: In Experiment 1, recognition performances by listeners with normal hearing were better than performances by listeners with hearing loss. For both groups, performances on the HP materials were better than performances on the LP materials. Performances on the LP materials and on the WIN were similar. Performances at 8 dB S/N were the same with the traditional fixed level presentation and the descending presentation level paradigms. The results from Experiment 2 demonstrated that the four list pairs of R-SPIN materials produced good first approximation psychometric functions over the -4 to 23 dB S/N range, but there were irregularities. The data from Experiment 2 were used in Experiment 3 to guide the selection of the words to be used at the various SNRs that would provide homogeneous performances at each SNR and would produce systematic psychometric functions. In Experiment 3, the 50% points were in good agreement for the LP and HP conditions within both groups of listeners. The psychometric functions for List Pairs 1 and 2, 3 and 4, and 5 and 6 had similar characteristics and maintained reasonable separations between the HP and LP functions, whereas the HP and LP functions for List Pair 7 and 8 bisected one another at the lower SNRs. Conclusions: This study indicates that the R-SPIN can be configured into a multiple SNR paradigm. A more in-depth study with the R-SPIN materials is needed to develop lists that are systematic and reasonably equivalent for use on listeners with hearing loss. The approach should be based on the psychometric characteristics of the 200 HP and 200 LP sentences with the current R-SPIN lists discarded. Of importance is maintaining the synchrony between the sentences and their accompanying babble.
|
2 |
Speech-in-Noise Measures: Variable Versus Fixed Speech and Noise LevelsWilson, Richard H., McArdle, Rachel 01 September 2012 (has links)
Objective: The purpose was to determine if speech-recognition performances were the same when the speech level was fixed and the noise level varied as when the noise level was fixed and the speech level varied. Design: A descriptive/quasi-experimental experiment was conducted with Lists 3 and 4 of the revised speech perception in noise (R-SPIN) test, which involves high predictability (HP) and low predictability (LP) words. The R-SPIN was modified into a multiple signal-to-noise paradigm (23- to -1-dB in 3-dB decrements) from which the 50% points were calculated with the Spearman-Kärber equation. Study sample: Sixteen young listeners with normal hearing and 48 older listeners with pure-tone hearing losses participated. Results: The listeners with normal hearing performed better than the listeners with hearing loss on both the HP and LP conditions. For both groups of listeners, (1) performance on the HP sentences was better than on the LP sentences, and (2) the mean 50% points were 0.1 to 0.4 dB lower (better) on the speech-variable, babble-fixed condition than on the speech-fixed, babble-variable condition. Conclusions: For practical purposes the ≤0.4-dB differences are not considered noteworthy as the differences are smaller than the decibel value of one word on the test (0.6 dB).
|
3 |
Normative Data for the Words-in-Noise Test for 6-to 12-Year-Old ChildrenWilson, Richard H., Farmer, Nicole M., Gandhi, Avni, Shelburne, Emily, Weaver, Jamie 01 October 2010 (has links)
Purpose: To establish normative data for children on the Words-in-Noise Test (WIN; R. H. Wilson, 2003; R. H. Wilson & R. McArdle, 2007). Method: Forty-two children ineachof 7 age groups, rangingin age from6to12years (n = 294), and 24 young adults (age range: 18-27 years) with normal hearing for pure tones participated. All listeners were screened at 15 dB HL (American National Standards Institute, 2004) with the octave interval between 500 and 4000 Hz. Randomizations of WIN Lists 1, 2, and 1 or WIN Lists 2, 1, and 2 were presented with the noise fixed at 70 dB SPL, followed by presentation at 90 dB SPL of the 70 Northwestern University Auditory Test No. 6 (T. W. Tillman & R. Carhart, 1966) words used in the WIN. Finally, the Peabody Picture Vocabulary Test-Revised (L. M. Dunn & L. M. Dunn, 1981) was administered. Testing was conducted in a quiet room. Results: There were 3 main findings: (a) The biggest change inrecognition performance occurred between the ages of 6 and 7 years; (b) from 9 to 12 years, recognition performance was stable; and (c) performance by young adults (18-27 years) was slightly better (1-2 dB) than performance by the older children. Conclusion: The WIN can be used with children as young as 6 years of age; however, age-specific ranges of normal recognition performance must be used.
|
Page generated in 0.1593 seconds