1 |
Electrically-Small Antenna Performance Enhancement for Near-Field Detuning EnvironmentsHearn, Christian Windsor 13 December 2012 (has links)
Bandwidth enhancement of low-profile omnidirectional, electrically-small antennas has evolved from the design and construction of AM transmitter towers eighty years ago to current market demand for battery-powered personal communication devices. Electrically-small antenna theory developed with well-known approximations for characterizing radiation properties of antenna structures that are fractions of the radiansphere. Current state-of-the-art wideband small antennas near kaH1 have achieved multiple-octave impedance bandwidths when utilizing volume-efficient designs.
Significant advances in both the power and miniaturization of microelectronics have created a second possible approach to enhance bandwidth. Frequency agility, via switch tuning of reconfigurable structures, offers the possibility of the direct integration of high-speed electronics to the antenna structure. The potential result would provide a means to translate a narrow instantaneous bandwidth across a wider operating bandwidth.
One objective of the research was to create a direct comparison of the passive- multi-resonant and active-reconfigurable approaches to enhance bandwidth. Typically, volume-efficient, wideband antennas are unattractive candidates for low-profile applications and conversely, active electronics integrated directly antenna elements continue to introduce problematic loss mechanisms at the proof-of-concept level
The dissertation presents an analysis method for wide bandwidth self-resonant antennas that exist in the 0.5dkad1.0 range. The combined approach utilizes the quality factor extracted directly from impedance response data in addition to near-and-far field modal analyses. Examples from several classes of antennas investigated are presented with practical boundary conditions. The resultant radiation properties of these antenna-finite ground plane systems are characterized by an appreciable percentage of radiated power outside the lowest-order mode.
Volume-efficient structures and non-omnidirectional radiation characteristics are generally not viable for portable devices. Several examples of passive structures, representing different antenna classes are investigated. A PIN diode, switch-tuned low-profile antenna prototype was also developed for the comparison which demonstrated excessive loss in the physical prototype.
Lastly, a passive, low-profile multi-resonant antenna element with monopole radiation is introduced. The structure is an extension of the planar inverted-F antenna with the addition of a capacitance-coupled parasitic to enhance reliable operation in unknown environments. / Ph. D.
|
Page generated in 0.1077 seconds