• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Determination of the Earth's Gravity Field in Spheroidal Coordinates

Hamilton, M. Spencer, Jr. 01 May 1961 (has links)
The earth's gravity field G * at a point P in the region surrounding the earth's surface is defined as the force acting on a unit mass concentrated at P. This is a force resulting from two components: (1) G1 due to the gravitational attraction of the earth's mass, and (2) G2 due to the earth's rotation.
2

Foil Depression Factors for Disc-shaped Detectors

Gallagher, Tom Lewis 06 1900 (has links)
The generalized data which are presented in this thesis are the culmination of the determination of the foil depression factor using oblate spheroidal coordinates.
3

Analytical and numerical studies of several fluid mechanical problems

Kong, Dali January 2012 (has links)
In this thesis, three parts, each with several chapters, are respectively devoted to hydrostatic, viscous and inertial fluids theories and applications. In the hydrostatics part, the classical Maclaurin spheroids theory is generalized, for the first time, to a more realistic multi-layer model, which enables the studies of some gravity problems and direct numerical simulations of flows in fast rotating spheroidal cavities. As an application of the figure theory, the zonal flow in the deep atmosphere of Jupiter is investigated for a better understanding of the Jovian gravity field. High viscosity flows, for example Stokes flows, occur in a lot of processes involving low-speed motions in fluids. Microorganism swimming is such typical a case. A fully three dimensional analytic solution of incompressible Stokes equation is derived in the exterior domain of an arbitrarily translating and rotating prolate spheroid, which models a large family of microorganisms such as cocci bacteria. The solution is then applied to the magnetotactic bacteria swimming problem and good consistency has been found between theoretical predictions and laboratory observations of the moving patterns of such bacteria under magnetic fields. In the analysis of dynamics of planetary fluid systems, which are featured by fast rotation and very small viscosity effects, three dimensional fully nonlinear numerical simulations of Navier-Stokes equations play important roles. A precession driven flow in a rotating channel is studied by the combination of asymptotic analyses and fully numerical simulations. Various results of laminar and turbulent flows are thereby presented. Computational fluid dynamics requires massive computing capability. To make full use of the power of modern high performance computing facilities, a C++ finite-element analysis code is under development based on PETSc platform. The code and data structures will be elaborated, along with the presentations of some preliminary results.
4

Curvilinear Analysis and Approximation of Cardiac DTI In-Vivo

Toussaint, Nicolas 26 July 2012 (has links) (PDF)
Diffusion Tensor MRI can be used to depict the anisotropy of tissue. Translation of this technique to moving objects such as the beating heart has recently become feasible, but remains a challenging task, often leading to high noise levels and limited accuracy. Ultimately, knowledge of the 3D fibre architecture of the myocardium invivo should allow for a better understanding of the cardiac function both in healthy and pathological situations. The main goal of the work presented in this thesis is to overcome the difficulties that such technology presents, by introducing a combination of image processing and analysis approaches. In particular, the characteristic ellipsoidal shape of the left ventricular chamber is used to introduce a shape-based prolate spheroidal coordinate frame that allows for comprehensive, robust and dedicated analysis of diffusion tensor data within the myocardial wall. It is shown that the description of this information is more compact in this coordinate frame. Furthermore, it is demonstrated that the acquisition limitations can be overcome by introducing an approximation scheme based on this coordinate frame. These techniques are tested on ex-vivo datasets to assess their fidelity and sensitivity. Finally, these techniques are applied in-vivo on a group of healthy volunteers, where 2D DTI slices of the LV were acquired at end diastole and end systole, using cardiac dedicated diffusion MR acquisition. Results demonstrate the advantages of using curvilinear coordinates both for the analysis and the approximation of cardiac DTI information. Resulting in-vivo fibre architectures were found to agree with previously reported studies on ex-vivo specimens. The outcome of this work can open the door for clinical applications and cardiac electrophysiology modelling, and improve the understanding of the left ventricular structure and dynamics.

Page generated in 0.0522 seconds