• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IMPACT OF A WARMED ENVIRONMENT, SPIKE MORPHOLOGY AND GENOTYPE ON FHB LEVELS IN A SOFT RED WINTER WHEAT MAPPING POPULATION

Weber Tessmann, Elisane 01 January 2019 (has links)
Fusarium head blight (FHB) is a serious disease of wheat (Triticum aestivum) and other small grains; disease severity is affected by temperature and rainfall. This research comprised three studies: an artificially warmed experiment during 2016-2017, a morphology study and an FHB resistance screening study in 2015-2016, using approximately 250 wheat cultivars and breeding lines from programs in the eastern US. The location was the University of Kentucky Spindletop Research Farm in Lexington, KY. Higher levels of Fusarium damaged kernels and the toxin deoxynivalenol (DON) were observed in the warmed treatment compared to the control, and plant development was accelerated. In the FHB resistance screen, significant (p < 0.05) genotype differences for all traits were observed. A GWAS identified 16 SNPs associated with resistance and susceptibility, ranging from -2.14 to 4.01%. Three DON-associated SNPs reduced toxin levels by 3.2, 2.1, and 1.5 ppm. In the morphology study, negative correlations were observed among morphological and disease traits. Small effect SNPs were identified for all morphological traits, which might be useful in genomic selection; traits like spike length, spikelet number and inclination could be used in phenotyping. Response to warming indicates that existing resistance sources may be less effective in a warming climate.

Page generated in 0.0623 seconds