1 |
Aspects of learning within networks of spiking neuronsCarnell, Andrew Robert January 2008 (has links)
Spiking neural networks have, in recent years, become a popular tool for investigating the properties and computational performance of large massively connected networks of neurons. Equally as interesting is the investigation of the potential computational power of individual spiking neurons. An overview is provided of current and relevant research into the Liquid Sate Machine, biologically inspired artificial STDP learning mechanisms and the investigation of aspects of the computational power of artificial, recurrent networks of spiking neurons. First, it is shown that, using simple structures of spiking Leaky Integrate and Fire (LIF) neurons, a network n(P), can be built to perform any program P that can be performed by a general parallel programming language. Next, a form of STDP learning with normalisation is developed, referred to as STDP + N learning. The effects of applying this STDP + N learning within recurrently connected networks of neurons is then investigated. It is shown experimentally that, in very specific circumstances Anti-Hebbian and Hebbian STDP learning may be considered to be approximately equivalent processes. A metric is then developed that can be used to measure the distance between any two spike trains. The metric is then used, along with the STDP + N learning, in an experiment to examine the capacity of a single spiking neuron that receives multiple input spike trains, to simultaneously learn many temporally precise Input/Output spike train associations. The STDP +N learning is further modified for use in recurrent networks of spiking neurons, to give the STDP + NType2 learning methodology. An experiment is devised which demonstrates that the Type 2 method of applying learning to the synapses of a recurrent network — effectively a randomly shifting locality of learning — can enable the network to learn firing patterns that the typical application of learning is unable to learn. The resulting networks could, in theory, be used to create to simple structures discussed in the first chapter of original work.
|
2 |
Learning the association of multiple inputs in recurrent networksAbiva, Jeannine Therese 01 December 2013 (has links)
In spite of the many discoveries made in neuroscience, the mechanism by which memories are formed is still unclear. To better understand how some disorders of the brain arise, it is necessary to improve our knowledge of memory formation in the brain. With the aid of a biological experiment, an artificial neural network is developed to provide insight into how information is stored and recalled. In particular, the bi-conditional association of distinct spatial and non-spatial information is examined using computational techniques. The thesis defines three versions of a computational model based on a combination of feedforward and recurrent neural networks and a biologically-inspired spike time dependent plasticity learning rule. The ability of the computational model to store and recall the bi-conditional object-space association task through reward-modulated plastic synapses is numerically investigated.
Further, the network's response to variation of certain parameter values is numerically addressed. A parallel algorithm is introduced to reduce the running time necessary to test the robustness of this artificial neural network. The numerical results produced with this algorithm are then analyzed by a statistical approach, and the network's ability for learning is assessed.
|
3 |
An advanced neuromorphic accelerator on FPGA for next-G spectrum sensingAzmine, Muhammad Farhan 10 April 2024 (has links)
In modern communication systems, it’s important to detect and use available radio frequencies effectively. However, current methods face challenges with complexity and noise interference. We’ve developed a new approach using advanced artificial intelligence (AI) based computing techniques to improve efficiency and accuracy in this process. Our method shows promising results, requiring only minimal additional resources in exchange of improved performance compared to older techniques. / Master of Science / In modern communication systems, it’s important to detect and use available radio frequencies effectively. However, current methods face challenges with complexity and noise interference. We’ve developed a new approach using advanced artificial intelligence (AI) based computing techniques to improve efficiency and accuracy in this process. Our method shows promising results, requiring only minimal additional resources in exchange of improved performance compared to older techniques.
|
Page generated in 0.1284 seconds