• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Yang-Mills Theory in Gauge-Invariant Variables and Geometric Formulation of Quantum Field Theories

Slizovskiy, Sergey January 2010 (has links)
In Part I we are dealing with effective description of Yang-Mills theories based on gauge-invarint variables. For pure Yang-Mills we study the spin-charge separation varibles. The dynamics in these variables resembles the Skyrme-Faddeev model. Thus the spin-charge separation is an important intermediate step between the fundamental Yang-Mills theory and the low-energy effective models, used to model the low-energy dynamics of gluons. Similar methods may be useful for describing the Electroweak sector of the Standard Model in terms of gauge-invariant field variables called supercurrents. We study the geometric structure of spin-charge separation in 4D Euclidean space (paper III) and elaborate onconnection with gravity toy model. Such reinterpretation gives a way to see how effective flat background metric is created in toy gravity model by studying the appearance of dimension-2 condensate in the Yang-Mills (paper IV). For Electroweak theory we derive the effective gauge-invariant Lagrangian by doing the Kaluza-Klein reduction of higher-dimensional gravity with 3-brane, thus making explicit the geometric interpretation for gauge-invariant supercurrents. The analogy is then made more precise in the framework of exact supergravity solutions. Thus, we interpret the Higgs effect as spontaneous breaking of Kaluza-Klein gauge symmetry and this leads to interpretation of Higgs field as a dilaton (papers I and II). In Part II of the thesis we study rather simple field theories, called “geometric” or “instantonic”. Their defining property is exact localization on finite-dimensional spaces – the moduli spaces of instantons. These theories allow to account exactly for non-linearity of space of fields, in this respect they go beyond the standard Gaussian perturbation theory. In paper V we show how to construct a geometric theory of chiral boson by embedding it into the geometric field theory. In Paper VI we elaborate on the simplest geometric field theory – the supersymmetric Quantum Mechanics and construct new non-perturbative topological observables that have a transparent meaning both in geometric and in the Hamiltonian formalisms. In Paper VII we are motivated by making perturbations away from the simple instantonic limit. For that we need to carefully define the observables that are quadratic in momenta and develop the way to compute them in geometric framework. These correspond geometrically to bivector fields (or, in general, the polyvector fields). We investigate the local limit of polyvector fields and compare the geometric calculation with free-field approach.
2

Real-Time DMRG Dynamics Of Spin And Charge Transport In Low-Dimensional Strongly Correlated Fermionic Systems

Dutta, Tirthankar 05 1900 (has links) (PDF)
This thesis deals with out-of-equilibrium transport phenomena in strongly correlated low-dimensional fermionic systems, with special emphasis on π-conjugated molecular materials. The focus of this work is to study real-time dynamics of spin and charge transport in these systems in order to investigate non-equilibrium transport in single-molecule electronic and spintronic devices. Chapter 1 describes the electronic structure and dynamics of strongly correlated fermionic systems in general, and in one-dimension, in particular. For this purpose, effective low-energy model Hamiltonians (used in this work) are discussed. Whenever applicable, approximate analytical and numerical methods commonly used in the literature to deal with these model Hamiltonians, are outlined. In the context of one-dimensional strongly correlated fermionic systems, analytical techniques like the Bethe ansatz and bosonization, and numerical procedures like exact diagonalization and DMRG, used for solving finite systems, are discussed in detail. Chapter 2 provides an overview of the different zero-temperature (T = 0) time-dependent DMRG algorithms, which have been used to study out-of-equilibrium time-dependent phenomena in low-dimensional strongly correlated systems. In Chapter 3 we employ the time-dependent DMRG algorithm proposed by Luo, Xiang and Wang [Phys. Rev. Lett. 91, 049701 (2003)], to study the role of dimerization and electronic correlations on the dynamics of spin-charge separation. We employ the H¨uckel and Hubbard models for our studies. We have modified the algorithm proposed by Luo et. al to overcome some of its limitations. Chapter 4 presents a generalized adaptive time-dependent density matrix renormalization group (DMRG) scheme developed by us, called the Double Time Window Targeting (DTWT) technique, which is capable of giving accurate results with lesser computational resources than required by the existing methods. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et. al, [Phys.Rev. Lett. 91, 049701 (2003)], and the time-step targeting (TST) algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. In chapter 5 we apply the Double Time Window Targeting (DTWT) technique, which was discussed in the previous chapter, for studying real-time quantum dynamics of spin-charge separation in π-conjugated polymers. We employ the Pariser-Parr-Pople (PPP) model which has long-range electron-electron interactions. For investigating real-time dynamics of spin and charge transport, we inject a hole at one end of polyene chains of different lengths and study the temporal evolution of its spin and charge degrees of freedom, using the DTWT td-DMRG algorithm. Chapter 6 we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes (D- (CH)x- A) chains, also known as push-pull polyenes. We employ long-range correlated model Hamiltonian for the D- (CH)x- A system and, real-time DMRG dynamics for time propagating the wave packet obtained by injecting a hole at a terminal site in the ground state of the system. Our studies reveal that the end groups do not affect the spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these with the polymethineimine (CN)x system in which besides electron affinities, the nature of pz orbitals in conjugation also alternate from site to site. Chapter 7 presents our investigation on the effect of static electron-phonon coupling (dimerization) on the dynamics of spin-charge separation in particular, and transport in general, in π-conjugated polyene chains. The polyenes are modeled by the Pariser-Parr-Pople Hamiltonian, having long-range electron-electron correlations. Our studies reveal that spin and charge velocities depend both on the chain length and dimerization. The spin and charge velocities increase as dimerization increases, but the amount of charge and spin transported along the chain decrease with enhancement in dimerization. Furthermore, in the range 0.3≤ δ≤0.5, it is observed that the dynamics of spin-charge separation becomes complicated, and the charge degree of freedom is affected more by electron-phonon coupling compared to the spin degree of freedom.

Page generated in 0.0984 seconds