• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy Harvesting IC Design for an Electromagnetic Generator Based on the Split Capacitor Approach

Dancy, Alant'e Jaquan 18 September 2018 (has links)
The proposed energy harvesting system intends to harvest vibrational energy via an electromagnetic generator (EMG). The proposed circuit intends to extract maximum power from the EMG by utilizing the maximum power transfer theorem which states that maximum power is transferred to the load when the source resistance equals the load resistance. The proposed circuit is a synchronous split-capacitor boost converter operating in boundary conduction mode (BCM) to achieve impedance matching and therefore maximum power transferred to the load. The circuit topology combines the rectifier and power stage to reduce power loss of the power management integrated circuit (PMIC). The proposed circuit is designed and fabricated in 130 nm BiCMOS technology. The circuit is validated through schematic level simulations and post-layout simulations. The results conclude the proposed circuit and control operates in a manner to achieve BCM. / Master of Science / Tracking and monitoring systems and products has become more prevalent in our society. Consumers want to know when a package they ordered will arrive. Grocery stores would like to track a produce from harvest to the shelves, ensuring their produce is safe to eat. Produce should be kept around 0 °C and if it exceeds that anywhere during the supply chain, the store should be alerted. Wireless sensor nodes (WSNs) are such devices that would be able to monitor the temperature of produce or the location of a package. These devices must be small, reliable, long-life and cost efficient. Using a battery to power WSNs is an inconvenience as the battery must be replaced often. The proposed circuit enables a self-sufficient WSN that is compact, dependable, long-lasting and economical when deployed at large scale. The proposed circuit has been designed, fabricated and proven through simulations.
2

Ztráty jednofázového asynchronního motoru s trvale připojeným kondenzátorem / Losses of capacitor run induction motor

Štaffa, Jiří January 2015 (has links)
This project deals with increasing efficiency of one phase induction motor with permanent split capacitor. We can whole thesis divide into two parts, the first one is basic and the second is interested in analysis and measurement. First part handles with construction of single phase induction motor, explanation of function principle, start and run of motor. Calculating of efficiency including type of losses, which reduce efficiency. Second part concerns analysis losses including moment load characteristic, motor measurement while rotor is locked, with no load operation, measuring mechanical and additional losses. Further there will be measured useful values for creation model for simulation (reactance of windings etc.). Than will be the model created in ANSYS Maxwell with module RMxprt. After analytic calculation in RMxprt and using Finite Element Method (FEM) load characteristics will be compared together. This comparison gives us information about accuracy of model for simulation. Simulation and measurement will be carried out on another engine with high quality ferromagnetic material used for magnetic circuit of motor. Further will be done simulation of motor with modifications shown in previous chapter for high efficiency.

Page generated in 0.0543 seconds