• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Superhydrophobic SiO2 Nano-particles on the Performance of PVDF Flat Sheet Membranes for Membrane Distillation

Efome, Johnson Effoe January 2015 (has links)
Poly(vinylidene) fluoride (PVDF) nano-composite membranes were prepared. The dope solution contained varied concentrations of superhydrophobic SiO2 nano-particles. The fabricated flat sheet membranes were characterized extensively by SEM, FTIR, water contact angle, LEPw, surface roughness, pore size diameter and pore size distribution. The effect of the nano-particles on the membrane performance was then analysed. The nano-composite membranes showed increased surface pore diameter, elevated water contact angle measurements with lower LEPw when compared to the neat membrane. The 7 wt. % nano-composite membrane showed the greatest flux in a VMD process with 2.9 kg/m2.h flux achieved accounting to a 4 fold increase when compared to the neat membrane. Desalination test were carried out using a 35 g/L synthetic salt water and rejection >99.98% was obtained. The best performing nano-composite dope solution (7 wt. %) was then further treated for performance enhancement by increasing the water content to increase pore size and pore size distribution followed by coating with nano-fibres. The uncoated and coated flat sheets, were characterized by SEM, surface roughness, LEPw and CAw. Flux analysis showed that the increase in water content had little effects on the VMD flux. It also suggests that; the nano-fibre layer posed very little resistance to mass transfer. A comparison of VMD and DCMD was also done experimentally.

Page generated in 0.0397 seconds