• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Modification of Gold Surfaces via the Reduction of Aryldiazonium Salts

Paulik, Matthew George January 2007 (has links)
This thesis presents the study of films derived from the reduction of aryldiazonium salts at gold surfaces. The properties of bare polycrystalline surfaces were investigated via the observation of the electrochemical oxidation and reduction of the gold. Films derived from diazonium salts were electrochemically grafted to the gold surface. The structure and stability of these interfaces was examined through the use of redox probes, gold oxide electrochemistry and water contact angle measurements. The spontaneous reduction of aryldiazonium salts at gold surfaces was investigated and the possible applications it presented towards printing and patterning of the gold surface with films were explained. Polycrystalline gold surfaces were prepared and subjected to various treatments, to observe the behaviour of gold oxide formation and reduction at the surface. Various effects on the surface structure were observed after treatment in solvents and electrolyte solutions. The surface structure of the gold atoms frequently changed due to the high mobilities of the gold atoms, and it is difficult to achieve a reproducibly stable surface. The electrochemical modification of gold surfaces via the reduction of aryldiazonium salts was investigated. Surfaces were modified with methylphenyl and carboxyphenyl films and exposed to various treatments. Monitoring the gold oxide reduction changes enabled the surface coverage of modifier directly attached to the surface to be calculated. The films appear to be stable, loosely packed and porous. The films are flexible in nature; redox probe responses showed reversible changes after repeated sonication in solvents of differing polarities and hydrophilicities. Contact angle measurements further support the notion of films that can reorganise in response to their environment. The spontaneous reduction of aryldiazonium salts at gold surfaces was observed. Film coverage was significantly lower at the spontaneously grafted surface than for films grafted electrochemically. Gold surfaces were successfully modified via microcontact printing, and surface coverages similar to the spontaneously grafted film were achieved. Microcontact printing was also used to pattern surfaces with films derived from diazonium salts. Feature sizes down to 100 µm were successfully achieved.
2

The Modification of Gold Surfaces via the Reduction of Aryldiazonium Salts

Paulik, Matthew George January 2007 (has links)
This thesis presents the study of films derived from the reduction of aryldiazonium salts at gold surfaces. The properties of bare polycrystalline surfaces were investigated via the observation of the electrochemical oxidation and reduction of the gold. Films derived from diazonium salts were electrochemically grafted to the gold surface. The structure and stability of these interfaces was examined through the use of redox probes, gold oxide electrochemistry and water contact angle measurements. The spontaneous reduction of aryldiazonium salts at gold surfaces was investigated and the possible applications it presented towards printing and patterning of the gold surface with films were explained. Polycrystalline gold surfaces were prepared and subjected to various treatments, to observe the behaviour of gold oxide formation and reduction at the surface. Various effects on the surface structure were observed after treatment in solvents and electrolyte solutions. The surface structure of the gold atoms frequently changed due to the high mobilities of the gold atoms, and it is difficult to achieve a reproducibly stable surface. The electrochemical modification of gold surfaces via the reduction of aryldiazonium salts was investigated. Surfaces were modified with methylphenyl and carboxyphenyl films and exposed to various treatments. Monitoring the gold oxide reduction changes enabled the surface coverage of modifier directly attached to the surface to be calculated. The films appear to be stable, loosely packed and porous. The films are flexible in nature; redox probe responses showed reversible changes after repeated sonication in solvents of differing polarities and hydrophilicities. Contact angle measurements further support the notion of films that can reorganise in response to their environment. The spontaneous reduction of aryldiazonium salts at gold surfaces was observed. Film coverage was significantly lower at the spontaneously grafted surface than for films grafted electrochemically. Gold surfaces were successfully modified via microcontact printing, and surface coverages similar to the spontaneously grafted film were achieved. Microcontact printing was also used to pattern surfaces with films derived from diazonium salts. Feature sizes down to 100 µm were successfully achieved.

Page generated in 0.1397 seconds