• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cumulon: Simplified Matrix-Based Data Analytics in the Cloud

Huang, Botong January 2016 (has links)
<p>Cumulon is a system aimed at simplifying the development and deployment of statistical analysis of big data in public clouds. Cumulon allows users to program in their familiar language of matrices and linear algebra, without worrying about how to map data and computation to specific hardware and cloud software platforms. Given user-specified requirements in terms of time, monetary cost, and risk tolerance, Cumulon automatically makes intelligent decisions on implementation alternatives, execution parameters, as well as hardware provisioning and configuration settings -- such as what type of machines and how many of them to acquire. Cumulon also supports clouds with auction-based markets: it effectively utilizes computing resources whose availability varies according to market conditions, and suggests best bidding strategies for them. Cumulon explores two alternative approaches toward supporting such markets, with different trade-offs between system and optimization complexity. Experimental study is conducted to show the efficiency of Cumulon's execution engine, as well as the optimizer's effectiveness in finding the optimal plan in the vast plan space.</p> / Dissertation
2

Latency-Aware Pricing in the Cloud Market

Yang Zhang (6622382) 10 June 2019 (has links)
<div>Latency is regarded as the Achilles heel of cloud computing. Pricing is an essential component in the cloud market since it not only directly affects a cloud service provider's (CSP's) revenue but also a user's budget. This dissertation investigates the latency-aware pricing schemes that provide rigorous performance guarantees for the cloud market. The research is conducted along the following major problems as summarized below:</div><div><br></div><div>First, we will address a major challenge confronting the CSPs utilizing a tiered storage (with cold storage and hot storage) architecture - how to maximize their overall profit over a variety of storage tiers that offer distinct characteristics, as well as file placement and access request scheduling policies. To this end, we propose a scheme where the CSP offers a two-stage auction process for (a) requesting storage capacity, and (b) requesting accesses with latency requirements. Our two-stage bidding scheme provides a hybrid storage and access optimization framework with the objective of maximizing the CSP's total net profit over four dimensions: file acceptance decision, placement of accepted files, file access decision and access request scheduling policy. The proposed optimization is a mixed-integer nonlinear program that is hard to solve. We propose an efficient heuristic to relax the integer optimization and to solve the resulting nonlinear stochastic programs. The algorithm is evaluated under different scenarios and with different storage system parameters, and insightful numerical results are reported by comparing the proposed approach with other profit-maximization models. We see a profit increase of over 60% of our proposed method compared to other schemes in certain simulation scenarios.</div><div><br></div><div>Second, we will resolve one of the challenges when using Amazon Web Services (AWS). Amazon Elastic Compute Cloud (EC2) provides two most popular pricing schemes--i) the costly on-demand instance where the job is guaranteed to be completed, and ii) the cheap spot instance where a job may be interrupted. We consider a user can select a combination of on-demand and spot instances to finish a task. Thus he needs to find the optimal bidding price for the spot-instance, and the portion of the job to be run on the on-demand instance. We formulate the problem as an optimization problem and seek to find the optimal solution. We consider three bidding strategies: one-time requests with expected guarantee, one-time requests with penalty for incomplete job and violating the deadline, and persistent requests. Even without a penalty on incomplete jobs, the optimization problem turns out to be non-convex. Nevertheless, we show that the portion of the job to be run on the on-demand instance is at most half. If the job has a higher execution time or smaller deadline, the bidding price is higher and vice versa. Additionally, the user never selects the on-demand instance if the execution time is smaller than the deadline. The numerical results illustrate the sensitivity of the effective portfolio to several of the parameters involved in the model. Our empirical analysis on the Amazon EC2 data shows that our strategies can be employed on the real instances, where the expected total cost of the proposed scheme decreases over 45% compared to the baseline strategy.<br></div>
3

High Performance Scientific Computing over Hybrid Cloud Platforms

Calatrava Arroyo, Amanda 16 December 2016 (has links)
Tesis por compendio / Scientific applications generally require large computational requirements, memory and data management for their execution. Such applications have traditionally used high-performance resources, such as shared memory supercomputers, clusters of PCs with distributed memory, or resources from Grid infrastructures on which the application needs to be adapted to run successfully. In recent years, the advent of virtualization techniques, together with the emergence of Cloud Computing, has caused a major shift in the way these applications are executed. However, the execution management of scientific applications on high performance elastic platforms is not a trivial task. In this doctoral thesis, Elastic Cloud Computing Cluster (EC3) has been developed. EC3 is an open-source tool able to execute high performance scientific applications by creating self-managed cost-efficient virtual hybrid elastic clusters on top of IaaS Clouds. These self-managed clusters have the capability to adapt the size of the cluster, i.e. the number of nodes, to the workload, thus creating the illusion of a real cluster without requiring an investment beyond the actual usage. They can be fully customized and migrated from one provider to another, in an automatically and transparent process for the users and jobs running in the cluster. EC3 can also deploy hybrid clusters across on-premises and public Cloud resources, where on-premises resources are supplemented with public Cloud resources to accelerate the execution process. Different instance types and the use of spot instances combined with on-demand resources are also cluster configurations supported by EC3. Moreover, using spot instances, together with checkpointing techniques, the tool can significantly reduce the total cost of executions while introducing automatic fault tolerance. EC3 is conceived to facilitate the use of virtual clusters to users, that might not have an extensive knowledge about these technologies, but they can benefit from them. Thus, the tool offers two different interfaces for its users, a web interface where EC3 is exposed as a service for non-experienced users and a powerful command line interface. Moreover, this thesis explores the field of light-weight virtualization using containers as an alternative to the traditional virtualization solution based on virtual machines. This study analyzes the suitable scenario for the use of containers and proposes an architecture for the deployment of elastic virtual clusters based on this technology. Finally, to demonstrate the functionality and advantages of the tools developed during this thesis, this document includes several use cases covering different scenarios and fields of knowledge, such as structural analysis of buildings, astrophysics or biodiversity. / Las aplicaciones científicas generalmente precisan grandes requisitos de cómputo, memoria y gestión de datos para su ejecución. Este tipo de aplicaciones tradicionalmente ha empleado recursos de altas prestaciones, como supercomputadores de memoria compartida, clústers de PCs de memoria distribuida, o recursos provenientes de infraestructuras Grid, sobre los que se adaptaba la aplicación para que se ejecutara satisfactoriamente. El auge que han tenido las técnicas de virtualización en los últimos años, propiciando la aparición de la computación en la nube (Cloud Computing), ha provocado un importante cambio en la forma de ejecutar este tipo de aplicaciones. Sin embargo, la gestión de la ejecución de aplicaciones científicas sobre plataformas de computación elásticas de altas prestaciones no es una tarea trivial. En esta tesis doctoral se ha desarrollado Elastic Cloud Computing Cluster (EC3), una herramienta de código abierto capaz de llevar a cabo la ejecución de aplicaciones científicas de altas prestaciones creando para ello clústers virtuales, híbridos y elásticos, autogestionados y eficientes en cuanto a costes, sobre plataformas Cloud de tipo Infraestructura como Servicio (IaaS). Estos clústers autogestionados tienen la capacidad de adaptar su tamaño, es decir, el número de nodos, a la carga de trabajo, creando así la ilusión de un clúster real sin requerir una inversión por encima del uso actual. Además, son completamente configurables y pueden ser migrados de un proveedor a otro de manera automática y transparente a los usuarios y trabajos en ejecución en el cluster. EC3 también permite desplegar clústers híbridos sobre recursos Cloud públicos y privados, donde los recursos privados son complementados con recursos Cloud públicos para acelerar el proceso de ejecución. Otras configuraciones híbridas, como el empleo de diferentes tipos de instancias y el uso de instancias puntuales combinado con instancias bajo demanda son también soportadas por EC3. Además, el uso de instancias puntuales junto con técnicas de checkpointing permite a EC3 reducir significantemente el coste total de las ejecuciones a la vez que proporciona tolerancia a fallos. EC3 está concebido para facilitar el uso de clústers virtuales a los usuarios, que, aunque no tengan un conocimiento extenso sobre este tipo de tecnologías, pueden beneficiarse fácilmente de ellas. Por ello, la herramienta ofrece dos interfaces diferentes a sus usuarios, una interfaz web donde se expone EC3 como servicio para usuarios no experimentados y una potente interfaz de línea de comandos. Además, esta tesis doctoral se adentra en el campo de la virtualización ligera, mediante el uso de contenedores como alternativa a la solución tradicional de virtualización basada en máquinas virtuales. Este estudio analiza el escenario propicio para el uso de contenedores y propone una arquitectura para el despliegue de clusters virtuales elásticos basados en esta tecnología. Finalmente, para demostrar la funcionalidad y ventajas de las herramientas desarrolladas durante esta tesis, esta memoria recoge varios casos de uso que abarcan diferentes escenarios y campos de conocimiento, como estudios estructurales de edificios, astrofísica o biodiversidad. / Les aplicacions científiques generalment precisen grans requisits de còmput, de memòria i de gestió de dades per a la seua execució. Este tipus d'aplicacions tradicionalment hi ha empleat recursos d'altes prestacions, com supercomputadors de memòria compartida, clústers de PCs de memòria distribuïda, o recursos provinents d'infraestructures Grid, sobre els quals s'adaptava l'aplicació perquè s'executara satisfactòriament. L'auge que han tingut les tècniques de virtualitzaciò en els últims anys, propiciant l'aparició de la computació en el núvol (Cloud Computing), ha provocat un important canvi en la forma d'executar este tipus d'aplicacions. No obstant això, la gestió de l'execució d'aplicacions científiques sobre plataformes de computació elàstiques d'altes prestacions no és una tasca trivial. En esta tesi doctoral s'ha desenvolupat Elastic Cloud Computing Cluster (EC3), una ferramenta de codi lliure capaç de dur a terme l'execució d'aplicacions científiques d'altes prestacions creant per a això clústers virtuals, híbrids i elàstics, autogestionats i eficients quant a costos, sobre plataformes Cloud de tipus Infraestructura com a Servici (IaaS). Estos clústers autogestionats tenen la capacitat d'adaptar la seua grandària, es dir, el nombre de nodes, a la càrrega de treball, creant així la il·lusió d'un cluster real sense requerir una inversió per damunt de l'ús actual. A més, són completament configurables i poden ser migrats d'un proveïdor a un altre de forma automàtica i transparent als usuaris i treballs en execució en el cluster. EC3 també permet desplegar clústers híbrids sobre recursos Cloud públics i privats, on els recursos privats són complementats amb recursos Cloud públics per a accelerar el procés d'execució. Altres configuracions híbrides, com l'us de diferents tipus d'instàncies i l'ús d'instàncies puntuals combinat amb instàncies baix demanda són també suportades per EC3. A més, l'ús d'instàncies puntuals junt amb tècniques de checkpointing permet a EC3 reduir significantment el cost total de les execucions al mateix temps que proporciona tolerància a fallades. EC3e stà concebut per a facilitar l'ús de clústers virtuals als usuaris, que, encara que no tinguen un coneixement extensiu sobre este tipus de tecnologies, poden beneficiar-se fàcilment d'elles. Per això, la ferramenta oferix dos interfícies diferents dels seus usuaris, una interfície web on s'exposa EC3 com a servici per a usuaris no experimentats i una potent interfície de línia d'ordres. A més, esta tesi doctoral s'endinsa en el camp de la virtualitzaciò lleugera, per mitjà de l'ús de contenidors com a alternativa a la solució tradicional de virtualitzaciò basada en màquines virtuals. Este estudi analitza l'escenari propici per a l'ús de contenidors i proposa una arquitectura per al desplegament de clusters virtuals elàstics basats en esta tecnologia. Finalment, per a demostrar la funcionalitat i avantatges de les ferramentes desenrotllades durant esta tesi, esta memòria arreplega diversos casos d'ús que comprenen diferents escenaris i camps de coneixement, com a estudis estructurals d'edificis, astrofísica o biodiversitat. / Calatrava Arroyo, A. (2016). High Performance Scientific Computing over Hybrid Cloud Platforms [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75265 / Compendio

Page generated in 0.0888 seconds