• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Multiphase Spray Characteristics at High-temperature and High-pressure Conditions using Engine Combustion Network (ECN) standard injectors.

Al-lehaibi, Moaz 12 1900 (has links)
Transportation sector is the backbone of today’s society and its being revolutionized by the development of electric cars. The subject of electrification of the fleet involves many challenges starting from building the require infrastructure all the way to securing raw material for batteries. Charging times and energy density are also two major challenges especially in heavy transportation. With current technologies it is impractical to use electric trucks as the advantages of direct injection engines are unmatched. A typical diesel car or truck has a very long range reaching around 1000 km using single fuel tank. The high energy density of fossil fuels is a corner stone of the heavy transportation sector. It is hard to imagine electric trucks without a breakthrough in battery technology that has very high energy density. High pressure combustion has great potential in extracting more power from liquid fuel. This is mainly attributed to the instant vaporization because of the vanishing surface tension once the fuel goes through a supercritical process, thus energy to vaporize the fuel is saved. Another advantage is in the better mixing that the highly dense and the highly diffused fluid possesses in that region. On the other hand, many of the modelling aspects requires to be investigated. For example, which equation of state predicts the correct density and what are the effect of the pressure and temperature dependant fluid properties on the spray development. To isolate the effect of the high pressure combustion from other possible modelling effects and to facilitate the investigation, simulations using both OpenFOAM and CONVERGE were conducted. First the morphologies of Spray C was numerically characterized under high-temperature and high-pressure conditions. The Volume of fluid method captured the cavitation properly upon using 7.8 μm mesh. The mass flow rate and the transient of the injection process were accurately captured. Implementation of appropriate high pressure models using OpenFOAM to account for real fluid effects showed that three-parameter Redlich-Kwong Peng-Robinson equation of state were superior than two-parameters realfluid equation of state. The correctness of fuel density and viscosity is dependant of the equation of state with ideal gas equation of state being inferior to the realfluid equation of state. The combustion characteristics of Spray A were investigated using coupled Eulerian-Lagrangian approach. This approach demonstrated the ability of the modeling framework in predicting wide variety of parametric effects.
2

Evaluation by Detailed CFD Modelling of the Effect of Renewable Fuels on the Flame Structure under Compression Ignition Engine Conditions

de León Ceriani, Daiana 19 July 2024 (has links)
[ES] El alto impacto del sector transporte respecto a las emisiones globales de CO2 y su efecto en el cambio climático ha llevado a que éste transite hacia tecnologías más eficientes y medioambientalmente sostenibles. Sin embargo, el ritmo de transformación es lento en relación a lo que se necesita para frenar el calentamiento global existente. En este sentido, en los últimos tiempos los caminos hacia la transformación se han diversificado; el concepto de "defossilization" ha surgido como alternativa a la descarbonización, ya que destaca la posibilidad de incluir una mayor cantidad de combustibles sintéticos y renovables, con los cuales se pueden obtener resultados igualmente efectivos. Dentro de estos, destacan los combustibles Polioximetileno dimetil éter (OMEn), su carácter oxigenado y no poseer enlaces carbono-carbono, los hace prometedores respecto a la formación de hollín. Además, presentan grandes similitudes y compatibilidades con el diésel convencional, lo cual posibilita el uso de la flota de vehículos con motores de combustión interna existente a nivel mundial, acelerando así la transición y siendo una alternativa con alcance global. La presente tesis tiene como objetivo llevar a cabo un estudio fundamental sobre el proceso de combustión y la estructura de la llama de chorros tipo Diésel cuando se utilizan combustibles tipo OMEn. Para la consecución de dicho objetivo, la metodología planteada es eminentemente computacional, encontrando aquí las mayores brechas en la literatura. Se lleva a cabo un estudio de la cinética química y el efecto de la difusión en los combustibles estudiados mediante configuraciones canónicas, como reactores homogéneos y flamelets de contraflujo. Posteriormente, se estudia detalladamente el proceso de combustión y la estructura de la llama mediante el uso extensivo de Dinámica de fluidos computacional (CFD, en inglés), con modelos de turbulencia RANS y LES, en conjunto con un modelo de combustión avanzado basado en el concepto de flamelets, denominado UFPV. Todos los casos estudiados están definidos siguiendo las directrices de la Engine Combustion Network (ECN), los cuales representan chorros inyectados en ambientes quiescentes con toberas monoorificio. Particularmente, se evalúan los Sprays A y D, y el impacto de variar la temperatura ambiente. Como conclusión general, se puede afirmar que estos modelos CFD predicen correctamente el desarrollo de la combustión bajo las condiciones analizadas, y que estos combustibles son capaces de desarrollar diferentes estructuras de llama altamente dependientes de las condiciones de contorno impuestas. / [CA] L'alt impacte del sector del transport respecte a les emissions globals de CO2 i el seu efecte en el canvi climàtic ha portat a que aquest transite cap a tecnologies més eficients i mediambientalment sostenibles. No obstant això, el ritme de transformació és lent en relació amb el que es necessita per frenar l'escalfament global existent. En aquest sentit, en els últims temps els camins cap a la transformació s'han diversificat; el concepte de "defossilització" ha sorgit com a alternativa a la descarbonització, ja que destaca la possibilitat d'incloure una major quantitat de combustibles sintètics i renovables, amb els quals es poden obtenir resultats igualment efectius. Dins d'aquests, destaquen els combustibles tipus polioximetilen dimetil èters (OMEn), el seu caràcter oxigenat i al no posseir enllaços carbó-carbó, els fa prometedors respecte a la formació de sutge. A més, presenten grans semblances i compatibilitats amb el dièsel convencional, la qual cosa possibilita l'ús de la flota de vehicles amb motors de combustió interna existent a nivell mundial, accelerant així la transició i essent una alternativa amb abast global. La present tesi té com a objectiu dur a terme un estudi basic sobre el procés de combustió i l'estructura de la flama de dolls tipus Dièsel quan s'utilitzen combustibles tipus OMEn. Per a la consecució d'aquest objectiu, la metodologia plantejada és eminentment computacional, trobant ací les majors mancances en la literatura. Es realitza un estudi de la cinètica química i l'efecte de la difusió en els combustibles estudiats mitjançant configuracions canòniques, com ara reactors homogenis i flamelets de contraflux. Posteriorment, s'estudia detalladament el procés de combustió i l'estructura de la flama mitjançant l'ús extensiu de dinàmica de fluids computacional (CFD, en anglés), amb models de turbulència RANS i LES, conjuntament amb un model de combustió avançat basat en el concepte de flamelets, anomenat UFPV. Tots els casos estudiats estan definits seguint les directrius de l'Engine Combustion Network (ECN, en anglés), els quals representen dolls injectats en ambients quiescents amb toveres mono-orifici. Particularment, s'avaluen els Sprays A i D, i l'impacte de variar la temperatura ambient. Com a conclusió general, es pot afirmar que aquests models CFD prediuen correctament el desenvolupament de la combustió sota les condicions analitzades, i que aquests combustibles són capaços de desenvolupar diferents estructures de flama altament dependents de les condicions de contorn imposades. / [EN] The significant impact of the transportation sector on global CO2 emissions and its effect on climate change has led to a shift towards more efficient and environmentally sustainable technologies. However, the pace of this transformation is slow relative to what is needed to mitigate existing global warming. In this regard, pathways toward transformation have diversified recently, with the concept of defossilization emerging as an alternative to decarbonization. Defossilization emphasizes the possibility of incorporating a greater variety of synthetic and renewable fuels, which can yield equally effective results. Among these alternatives, Polyoxymethylene dimethyl ether ($OMEn$) fuels stand out due to their oxygenated character and absence of carbon-carbon bonds, making them promising in reducing soot formation. Furthermore, their similarities and compatibilities with conventional diesel enable the utilization of the existing global fleet of internal combustion engine vehicles, thus potentially accelerating the transition on a global scale. This thesis aims to conduct a fundamental study on the combustion process and flame structure of Diesel-like sprays when OMEn-type fuels are utilized. To achieve this objective, the proposed methodology is eminently computational, addressing significant gaps in the existing literature. A study of chemical kinetics and diffusion effects in the fuels under investigation uses canonical configurations such as homogeneous reactors and counterflow flamelets. Subsequently, the combustion process and flame structure are examined in detail through extensive Computational fluid dynamics (CFD) simulations, employing RANS and LES turbulence models in conjunction with an advanced combustion model based on the flamelet concept, UFPV. All studied cases are defined according to the Engine Combustion Network (ECN) guidelines, representing sprays injected into quiescent environments with single-hole nozzles. Specifically, Spray A and D are evaluated, along with the impact of varying ambient temperatures. In conclusion, it can be affirmed that the CFD models accurately predict combustion development under the analysed conditions, and these fuels can develop different flame structures highly dependent on the imposed boundary conditions. / The respondent wishes to acknowledge the financial support received through a grant from Vicerrectorado de Investigación of Universitat Politècnica de València with reference FPI UPV SUBP2 (PAID-01-20) / De León Ceriani, D. (2024). Evaluation by Detailed CFD Modelling of the Effect of Renewable Fuels on the Flame Structure under Compression Ignition Engine Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207008

Page generated in 0.024 seconds