• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 17
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exploring methods for detecting super-spreaders using molecular data : A literature study and case study of VTEC O157:H7 in dairy calves

Wallskog, Amanda January 2022 (has links)
Verotoxin-producing Escherichia coli (VTEC) of serotype O157:H7 is a pathogen causing illness in humans worldwide. The path and nature of transmission from and among cattle is important knowledge when it comes to preventing cases of disease in humans. Two concepts potentially playing an important role in transmission of VTEC O157:H7 are super-shedding and super-spreading. Super-shedders are individuals (here calves) shedding a high amount of bacteria. Super-spreaders are individuals (here calves) spreading the disease in a higher extent compared to the rest of the population investigated. Little is known about these phenomenons’ effect on transmission as well as the relation between them. Therefore, it is important to investigate this further. The purpose of this master thesis was to get a better understanding of how super-spreaders can be identified. One way to identify super-spreaders and explore the transmission of a pathogen is to investigate molecular data using computational methods. Here, a literature study with a systematic approach was conducted in order to scan the literature for such methods. In this first phase of the master thesis three methods, all constructing transmission trees, were identified as relevant methods for the second phase. These methods are called outbreaker2, phybreak and TransPhylo. In the second phase of the master thesis, 32 whole genome sequences of VTEC O157:H7 collected from four different cattle farms were investigated using the methods outbreaker2 and phybreak. Both methods were able to identify samples infecting more secondary cases compared to the rest of the investigated population. Some of these samples came from the environment, possibly shedding light on the importance of the pathogen's ability to survive outside of the host, and therefore playing an important role in transmission of the disease. The rest of the samples infecting more secondary cases were from calves, and a minority of these were super-shedders. From this the importance of the relation between super-shedders and super-spreaders can neither be confirmed nor denied. Outbreaker2 suggested that the spread of the pathogen is frequently occurring between the four neighbouring farms, while phybreak instead suggested that the spread mostly occurs within the farms. From this, a scenario explaining that the transmission possibly occurs within farms is presented.
12

ANALYSIS OF HEAT-SPREADING THERMAL MANAGEMENT SOLUTIONS FOR LITHIUM-ION BATTERIES

Khasawneh, Hussam Jihad 20 October 2011 (has links)
No description available.
13

CHARACTERIZATION, MODELING AND DESIGN OF ULTRA-THIN VAPOR CHAMBER HEAT SPREADERS UNDER STEADY-STATE AND TRANSIENT CONDITIONS

Gaurav Patankar (5930123) 10 June 2019 (has links)
This dissertation is focused on studying transport behavior in vapor chambers at ultra-thin form factors so that their use as heat spreaders can be extended to applications with extreme space constraints. Both the steady-state and transient thermal transport behaviors of vapor chambers are studied. The steady-state section presents an experimental characterization technique, methodologies for the design of the vapor chamber wick structure, and a working fluid selection procedure. The transient section develops a low-cost, 3D, transient semi-analytical transport model, which is used to explore the transient thermal behavior of thin vapor chambers: 1) The key mechanisms governing the transient behavior are identified and experimentally validated; 2) the transient performance of a vapor chamber relative to a copper heat spreader of the same external dimensions is explored and key performance thresholds are identified; and 3) practices are developed for the design of vapor chambers under transient conditions. These analyses have been tailored to ultra-thin vapor chamber geometries, focusing on the application of heat spreading in mobile electronic devices. Compared to the conventional scenarios of use for vapor chambers, this application is uniquely characterized by compact spaces, low and transient heat input, and heat rejection via natural convection.
14

Variable rate application technology in the New Zealand aerial topdressing industry

Murray, Robert Ian January 2007 (has links)
Greater use of technology to assist aerial application of fertiliser will be of benefit to the topdressing industry and farmers. Benefits arise through automating the fertiliser flow control system; reducing off target fertiliser application, and managing fertiliser inputs based on the potential outputs of the farmland; thus increasing the profitability of hill country farming systems. A case for technology assisted application is developed by investigating the field performance of conventional and enhanced flow control systems and the effect of variable rate application on hill country pasture production. A single particle model that predicts flight trajectory from the particle force balance based on the aircraft groundspeed, axial and tangential propeller wash, wind characteristics and particle properties including sphericity was developed. Model predictions were compared to predictions from AGDISP 8.15. Results and trends were similar. The single particle ballistics model described above was extended to predict the lateral distribution of fertiliser after release from an aircraft. To achieve this, two parameters are important, the transverse flow profile of material leaving the hopper gatebox and the sphericity of the particles. Techniques for measuring these parameters are described and experimental results are presented for superphosphate. These data were used in the model to predict the lateral distribution pattern from a Gippsland Aeronautics 200C for a known discharge mass, which was compared to a measured pattern from the same aircraft for the same discharge mass. Good agreement between the shapes of the two distributions was found. The transverse distribution model provides a practical tool for optimising the design of spreaders, or optimum particle characteristics for a given spreader. It has the ability to predict the distribution profile of any particle size distribution from each, or all, of the spreader ducts. Culmination of the single particle and transverse distribution models led to the development of a deposition footprint model that was capable of predicting field application within a 25 ha trial site. The deposition footprint model was embedded inside a geographical information system and comparisons were made between the actual and predicted deposition across a series of transect lines. Good agreement was found. Following this, a comparison of the predicted field performance between an automated and manual control system were made. Economic benefits for a single application of superphosphate were identified through using automated control, where 10% less fertiliser was applied outside of the application zone when compared to the manually operated system. This equated to a net benefit of NZD $2800 for a 1500 ha hill country farming system. The value of improving the performance of a topdressing aircraft, on an industry level, was also examined. Cost/benefit analysis between a manual and automated system revealed a benefit of NZD $111,700 yr-1 for a single topdressing aircraft using the automated system. The economic impact of Variable Rate Application Technology (VRAT) is examined, using Limestone Downs as an example. The spatially explicit decision tree modelling technique was used to predict the annual pasture production over the entire Limestone Downs property. The resulting decision tree classes tended to follow the farm's digital elevation model. A series of six different fertiliser application scenarios were developed for comparison to a base line scenario using conventional aerial application techniques. VRAT outperformed the fixed rate applications in terms of pasture production and fertiliser utilisation. Full variable rate application and a model optimised prescription map, produced the highest annual pasture yield. Variable rate techniques were predicted to increase annual production and the spatial variability of that production. An economic analysis of the six production scenarios was undertaken. Farm cash surplus was calculated for each scenario and clearly revealed the benefits of using variable rate application technology. VRAT was found to be the most efficient and highest returning application method per hectare. Additional costs and increased charge-out rates were likely to occur under VRAT; nevertheless, the analysis indicated that significant financial incentives were available to the farmer. A sensitivity analysis revealed that even with a 20% increase in charge-out rate associated with VRAT, the farm's annual cash position varied by only $4500 (0.4%), suggesting the cost of implementing such a system is not prohibitive and would allow aircraft operators to add value to their services.
15

EFEITO DA VARIAÇÃO DA REGULAGEM NO PERFIL TRANSVERSAL DE APLICAÇÃO COM DISTRIBUIDORES CENTRÍFUGOS / EFFECT OF THE METERING VARIATION ON TRANSVERSAL PROFILE APPLICATION WITH CENTRIFUGAL BROADCASTER SPREADERS

Farret, Isaias Salin 26 August 2005 (has links)
Centrifugal broadcaster spreaders are equipments that revolutionized the application technology application of solid material in agriculture, for presenting a great field capacity for operational field and being able to apply a large range of application rate. However, this equipment presents some inconveniences, such as the difficulty in applying the material evenly in the width used for a specific work, even when adjusting is a relatively simple task. Moreover, another problem is its behaviour variability according to the characteristics of the product that is used and the application conditions. The objective of this work was to compare treatments regarding operational adjustments in order to balance and uniform the transversal pattern of distribution, with a higher operational field capacity, for different solid products. The machine evaluated was a centrifugal broadcaster for solid material equipped with two spinning disks. The study proposal is to investigate the effect of the incomplete combination between the product type, the opening of the hopper metering system and the distribution disks impellers position. Results showed that the medium and high speeds of the conveying chain for lime distribution and the low speed for oat distribution gave a large and sufficient range of application rate by varying the opening of the metering device. According to the analysed conditions, a combination of opening position 15, impellers radial position, effective width of 10 meters and alternate application system, presented the best uniformity of lime distribution. For the oat, on the other hand, the best uniformity of distribution was reached when combining opening position 1, impellers in radial position, effective width of 10 meters and alternate application system. I increasing the flow and advancing the impellers position gave a higher field capacity. That was due to the possibility of a larger effective width as well as a higher travel speed for both lime and oat, thus preserving the transversal distribution uniformity. The maximum widths recommended are 13.5 meters for lime and for oat application. / Os distribuidores centrífugos são equipamentos que revolucionaram a tecnologia de aplicação de produtos sólidos na agricultura por apresentarem grande capacidade de campo operacional e pela grande amplitude de dosagens que conseguem aplicar. No entanto, este equipamento apresenta alguns inconvenientes como a dificuldade em aplicar homogeneamente o material na largura de trabalho utilizada, mesmo com uma aparente facilidade de regulagem. Soma-se a este problema, a variação de comportamento do equipamento com as características do produto utilizado e as condições de aplicação. O objetivo deste trabalho foi comparar tratamentos relacionados a regulagens operacionais buscando equilibrar e uniformizar o perfil transversal de distribuição, com a maior capacidade de campo operacional possível, para os diferentes produtos sólidos. A máquina avaliada foi um distribuidor centrífugo de produtos sólidos, equipada com esteira de alimentação de fundo de depósito, comporta vertical de controle de fluxo e dois discos distribuidores providos de aletas. A proposta do trabalho foi estudar o efeito da combinação incompleta entre o tipo de produto, a abertura da comporta dosadora de produto e a posição das aletas no disco de distribuição. Os resultados mostraram que as velocidades média e alta da esteira transportadora, para a distribuição de calcário, e a velocidade baixa, para a distribuição de aveia, fornecem uma ampla e suficiente faixa de dosagens com a variação de abertura da comporta dosadora. Nas condições analisadas, a combinação de abertura de comporta 15, posição radial das aletas, largura útil de 10 metros e sistema de aplicação alternado, apresentou a melhor uniformidade de distribuição de calcário. Para aveia, a combinação de abertura de comporta 1, posição radial das aletas, largura útil de 10 metros e sistema de aplicação alternado, apresentou a melhor uniformidade de distribuição. O aumento da vazão e do adiantamento da posição das aletas possibilita maior capacidade de campo operacional ao conjunto mecanizado, pela possibilidade de operar com maior largura útil de aplicação e maior velocidade de deslocamento, tanto para o calcário como para a aveia, preservando os padrões de uniformidade de distribuição transversal. A largura de aplicação máxima recomendada foi de 13,5 metros para o calcário e para a aveia.
16

Multi-Objective Analysis and Optimization of Integrated Cooling in Micro-Electronics With Hot Spots

Reddy, Sohail R. 12 June 2015 (has links)
With the demand of computing power from electronic chips on a constant rise, innovative methods are needed for effective and efficient thermal management. Forced convection cooling through an array of micro pin-fins acts not only as a heat sink, but also allows for the electrical interconnection between stacked layers of integrated circuits. This work performs a multi-objective optimization of three shapes of pin-fins to maximize the efficiency of this cooling system. An inverse design approach that allows for the design of cooling configurations without prior knowledge of thermal mapping was proposed and validated. The optimization study showed that pin-fin configurations are capable of containing heat flux levels of next generation electronic chips. It was also shown that even under these high heat fluxes the structural integrity is not compromised. The inverse approach showed that configurations exist that are capable of cooling heat fluxes beyond those of next generation chips. Thin film heat spreaders made of diamond and graphene nano-platelets were also investigated and showed that further reduction in maximum temperature, increase in temperature uniformity and reduction in thermal stresses are possible.
17

Two-Phase Spray Cooling with Water/2-Propanol Binary Mixtures for High Heat Flux Focal Source

Obuladinne, Sai Sujith 12 1900 (has links)
Two-phase spray cooling has been an emerging thermal management technique offering high heat transfer coefficients and critical heat flux levels, near-uniform surface temperatures, and efficient coolant usage that enables to design of compact and lightweight systems. Due to these capabilities, spray cooling is a promising approach for high heat flux applications in computing, power electronics, and optics. Two-phase spray cooling inherently depends on saturation temperature-pressure relationships of the working fluid to take advantage of high heat transfer rates associated with liquid-vapor phase change. When a certain application requires strict temperature and/or pressure conditions, thermo-physical properties of the working fluid play a critical role in attaining proper efficiency, reliability, or packaging structure. However, some of the commonly used single-component working fluids have relatively poor properties and heat transfer performance. For example, water is the best coolant in terms of properties, yet in certain applications where the system operates at low temperature ambient, it cannot be implemented due to freezing risk. The common solution for this problem is to use the antifreeze mixtures (binary mixtures of water and alcohol) to reduce the freezing point. In such cases, utilizing binary mixtures to tune working fluid properties becomes an alternative approach. This study has two main objectives; (1) to experimentally investigate the two-phase spray cooling performance of water/2-propanol binary mixture, and (2) to numerically investigate the performance of an advanced heat spreader featuring high and directional thermal conductivity materials for high heat flux focal sources. The first part of the study involves experimental characterization of heat transfer performance. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. The test section, made of copper, measures 10 mm x 10 mm x 2 mm with a plain, smooth surface. A cylindrical copper block, with a matching size square protrusion attached onto the back side of the test section, generates heat using cartridge heaters and simulates high heat flux source. Embedded thermocouples are used to determine the spray surface temperature. The working fluid, water/alcohol mixture, has various concentration levels of 2-propanol by mass fraction 0.0 (pure water), 0.25, 0.50, 0.879 (azeotrope) and 1.0 (pure alcohol)), representing both non-azeotropic and azeotropic cases. Spray cooling tests are performed with a constant flow rate of 5.6 ml/cm².s at subcooled temperatures (~20oC) and atmospheric pressure. Experimental procedure involves controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. The second part of the study investigates an advanced heat spreader design for thermal management of a high heat flux focal source. The heat spreader comprises of three layers: a copper layer that interfaces with the heat source, a high and directional thermal conductivity material (such as CVD diamond and Pyrolytic graphite) layer, and another copper layer that is exposed to two-phase spray cooling. The analysis applies various heat fluxes on the heat source side and the experimentally obtained heat transfer coefficients on the spray side of the spreader design to determine the temperature and heat flux distributions, and examine the potential capabilities of this configuration.

Page generated in 0.0505 seconds