• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermomechanical modeling of a shape memory polymer

Ghosh, Pritha B. 15 May 2009 (has links)
The aim of this work is to demonstrate a Helmholtz potential based approach for the development of the constitutive equations for a shape memory polymer undergoing a thermomechanical cycle. The approach is motivated by the use of a simple spring-dashpot type analogy and the resulting equations are classified as state-equations and suitable kinetic equations for the recoverable-energy elements and the dissipative elements in the model respectively. These elements have mechanical properties which vary with temperature. The governing equations of the model are developed starting from the basic conservation laws together with the laws of thermodynamics. The entire set of equations are written in a state-evolution form as a set of ordinary differential equations to be solved using Matlab. It is shown that the results of the simulation in Matlab are in qualitative and quantitative agreement with experiments performed on polyurethane. Subsequently, we study the dependence of the yield-stress on temperature to be similar and different functions of heating or cooling processes.
2

Synchronized assessment ofcompression of corrugatedboard : Mechanics and visualization

Bürger, Johan January 2023 (has links)
Flexographic printing involves driving a paper substrate through the gap between two cylinders, where one of the cylinders has a print form layer covered in ink. The ink transfer from the print form to the paper is dependent on the pressure between the paper substrate and the cylinders. Knowledge about how the paper substrate reacts to compression is therefore important when aiming for high quality flexography printing. In this project the paper substrate in focus is corrugated board consisting of a top liner, a bottom liner and a fluted paper material in between the liners. To gain knowledge about the compression dynamics of the boards they are subjected to compression experiments with and without print form. The compression experiments are filmed and the videos are then analyzed using thresholding and tracking methods. The developed thresholding method is able to measure the thickness of each material separately in each frame while the developed tracking method is able to track the movement of the top and bottom metal blocks compressing the materials. The strains calculated from the image analysis measurements are then used as input values to the Maxwell spring-dashpot model with the intention of modelling the stress. Analysis of the compression experiment videos shows that the material properties of thecorrugated board may not be constant for the duration of the compression. This is because the fluting changes its shape when being compressed. Comparing the modelled stress to the stress measured by the press used in the experiments shows that the Maxwell spring-dashpot model is not able to model the stress accurately when the corrugated board goes through multiple stages of compression. The model works better for compression where the shape of the fluting is not significantly changed.

Page generated in 0.0839 seconds