• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 448
  • 223
  • 20
  • 16
  • 13
  • 11
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 811
  • 811
  • 792
  • 233
  • 226
  • 195
  • 169
  • 162
  • 162
  • 153
  • 138
  • 76
  • 76
  • 73
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Diagnosis and radioimmunotherapy of head and neck squamous cell carcinomas /

Ekberg, Tomas, January 2008 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2008. / Härtill 4 uppsatser.
52

Fas-mediated apoptosis in oral squamous cell carcinomas

Boardman, Mitzi Lynn. January 1998 (has links)
Thesis (M.S.)--University of Southern California, 1998. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
53

Fas-mediated apoptosis in oral squamous cell carcinomas

Boardman, Mitzi Lynn. January 1998 (has links)
Thesis (M.S.)--University of Southern California, 1998. / Includes bibliographical references.
54

Human papilloma virus and oral cancers : sexual behaviour as a risk factor

Chiriseri, Edina January 2017 (has links)
AIM & OBJECTIVES: Human papilloma virus (HPV) has been related to cervical infection, however, its part in Head and Neck Squamous Cell Carcinoma (HNSCC) is still debatable and is easy to refute. Suspicion of HPV causation is heightened when carcinomas arise in patients that are young and have never smoked. The present UK based study undertaken at Northampton NHS Trust endeavoured to determine the extent to which HPV is an entity in HNSCC in the UK. Furthermore, the study investigated whether sexual behaviour (as measured by sexual health clinic (SHC) attendance) is linked the acquisition of HPV associated HNSCC in young age groups. HNSCC incidences and sexual trends in the UK were collected from publicly available databases to identify if there were any changes at a national level in sexual behaviours and their influence on HNSCC in young age groups. MATERIALS & METHODS: PCR was used to evaluate the presence of HPV in biopsy samples from of 99 patients diagnosed with HNSCC at Northampton Hospital from 2006 to 2014. Patient demographics on age, sex, smoking, alcohol use and SHC attendance were also collected. All HPV PCR positive biopsies were further genotyped using an ABI 3130xl genetic analyser. Databases in the UK; including GLOBOCAN, NATSAL and PHE were searched for data on HNSCC prevalence, sexual behaviour trends and vaccine uptake. Multinomial regression explored the relationship between HPV positivity and sex, age, smoking, drinking, race and SHC attendance. RESULTS: PCR showed that 25.2% (25/99) of biopsies tested were positive for HPV and were all obtained from white participants. Most specimens (23, 92%) were high-risk (HR) HPV 16 positive with a mean age of 56 for HPV positivity and 72% of the cases 50-60 years old. Smokers were 11% in total (11/99) with most 88.9% participants (88/99) being non-smokers. HPV positivity was strongly linked with non-smoking history (p < 0.001); no alcohol abuse (p < 0.001); male gender (p < 0.001); young age less than 60 years (p < 0.001) and SHC attendance (p < 0.001). A Kruskal-Wallis post hoc test affirmed the impact of age on HPV positivity (p= < 0.05). GLOBOCAN and Cancer Research demonstrated a rising UK HNSCC pattern of over 200% for both sexes from 1975 to 2011. The three NATSAL surveys undertaken in 1990-1991, 1999-2001 and 2010-2012 demonstrated an overall increase in opposite and same sex partners. The UK average of individuals engaging in oral sex was in the younger age groups of between 16 and 54 with at least 70% of males and 63% females of that age engaging in oral sex. Finally, NASTAL 1, 2 and 3 surveys reported 20 vs 15; 25 vs 55; 55 vs 65 of males and females respectively with more than 10 sexual partners to have attended the SHC. The UK immunization take-up was over 90% countrywide. CONCLUSION: Few research studies have been conducted to date on HPV as a cause of HNSCC in the UK. The present research showed 25.2% of HNSCC to be caused by HPV, with the high risk (HR) genotype 16 (the leading cause of cervical cancer) accounting for 92% (23/25) of the cases. These outcomes affirmed the high prevalence of HR-HPV in HNSCC, with a rate of 25.2% similar to those reported previously. Routine HPV testing in those aged below 60 is therefore warranted. Smoking and drinking showed negative correlation; the young age of below 60 and attendance of the SHC for both sexes showed a positive correlation with HPV positive HNSCC. NATSAL data showed increased sexually risky behaviour coupled with attending the SHC in younger ages for both sexes. Increased sexually risky behaviour as shown in NASTAL surveys may be the reason why young age and SHC attendance is positively correlated with HPV HNSCC. The study highlights a conceivable relationship between HPV positive HNSCC in those under 60 years with no smoking history who attended the SHC. Smoking and drinking are known risks for HNSCC in those past 65 years of age; the negative association with HPV HNSCC in the young in the present research revealed smoking and drinking to have reduced association with HPV HNSCC. The reported HR-HPV positive HNSCC in young age groups inform future vaccination strategies and consequently decrease the quantity of HPV HNSCC's.
55

Intermittent blood flow in the murine SCCVII squamous cell carcinoma

Trotter, Martin James January 1990 (has links)
Intermittent blood flow in tumour microvasculature is believed to contribute to heterogeneity in tumour oxygen delivery; transient vessel nonperfusion is thought to result in acutely hypoxic cells resistant to conventional radiotherapy. This thesis describes three main areas of work: (1) the development of a histologic method capable of detecting intermittent blood flow in experimental tumours at the single vessel level; (2) the quantification and characterization of tumour blood flow fluctuations in the murine SCCVII carcinoma; and (3) the modification of tumour blood flow and the reduction of flow heterogeneity using vasoactive drugs. A double staining technique involving the sequential intravenous injection of two fluorescent vascular markers was used to detect transient episodes of tumour vessel nonperfusion. The stains employed were Hoechst 33342 and the carbocyanine dye, DiOC₇(3), both of which have short (< 3 minutes) circulation half-lives and preferentially stain cells adjacent to perfused blood vessels. When injections of the vascular markers are separated by some interval, each stain defines only those tumour vessels which were perfused during the few minutes immediately post-injection; thus, two "pictures" of tumour microvascular flow are obtained and tumour vessels subject to periods of nonperfusion can be easily visualized in frozen sections since they are outlined by one stain but not the other. Using the double staining technique, in which Hoechst 33342 and then DiOC₇(3) are administered intravenously 20 minutes apart to unrestrained C3H/He mice, staining mismatch (indicative of transient vessel nonperfusion) is regularly observed in subcutaneous SCCVII carcinoma. Vessels stained with DiOC₇(3) only (reperfusion of previously nonperfused vessels) or with H33342 only (nonperfusion of previously perfused vessels) are observed in approximately equal numbers. The percentage of tumour vessels subject to intermittent flow is a function of SCCVII tumour size: tumours ≤100 mg do not exhibit statistically significant amounts of mismatch. At sizes > 100 mg, overall staining mismatch is significantly increased over background levels and maximum mismatch is observed at tumour sizes >400 mg (8.6 ±2.9%). In most tumours, transient vessel nonperfusion is more pronounced in central tumour regions. In addition to mismatch observed in individual vessels, large "patches" of unequal staining are also seen. Anaesthesia or restraint do not significantly influence intermittent blood flow. The above information suggests that transient episodes of tumour vessel nonperfusion occur as a consequence of flow reduction in a feeding vessel; vessels in central regions of large tumours may be susceptible to collapse as a result of elevated tumour interstitial pressure. In the SCCVII tumour, a small number of peripheral vessels possess vascular smooth muscle and thus may be capable of vasomotor activity. The importance of perfusion pressure in the control of tumour microcirculatory flow was examined using vasoactive drugs. Hydralazine, a vasodilator which lowers blood pressure, causes a profound reduction in tumour RBC flow to 8.7 + 6.4% of pretreatment values in unanaesthetized mice. The drug causes collapse of central tumour vessels: following a dose of 10mg/kg intravenously, 36±16% of vessels are completely nonperfused, as detected using the double staining technique. Conversely, elevation of blood pressure using the vasoconstrictor angiotensin II results in a 2-3x increase in tumour blood flow. In addition, angiotensin II infusion significantly reduces the number of tumour vessels subject to transient nonperfusion from 8.1 % to 2.0%. However, intermittent blood flow in the SCCVII carcinoma can also be influenced by nonvasoactive drugs: nicotinamide, the amide form of vitamin B3, reduces episodes of transient nonperfusion. In summary, intermittent blood flow has been characterized in a transplanted murine squamous cell carcinoma using a novel fluorescent double staining method which allows the detection of flow fluctuations in solid tumours at the microvascular level. If transient episodes of nonperfusion occur in human tumours and result in impaired oxygen or drug delivery, then such flow fluctuations may be an important factor limiting tumour cure or local control by radiotherapy or chemotherapy. / Medicine, Faculty of / Pathology and Laboratory Medicine, Department of / Graduate
56

Identification of Therapeutic Targets for Oral Squamous Cell Carcinoma

Avinash, Pradhan Shalmali January 2013 (has links) (PDF)
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer, with a worldwide incidence of 275,000 new cases annually (Warnakulasuriya, 2009). Globally, the head and neck carcinoma represents a major cause of morbidity and mortality and is the sixth most commonly occurring cancer (Warnakulasuriya, 2009). A majority (>90%) of the head and neck cancers are squamous in origin and thus are linguistically referred to as head and neck squamous cell carcinoma (HNSCC) (Warnakulasuriya, 2009). HNSCC includes cancers of the oral cavity, larynx and pharynx; oral cancer being the most common (Warnakulasuriya, 2009). Although, HNSCC is the sixth most common cancer globally (Warnakulasuriya, 2009), the Indian scenario is graver. According to GLOBOCAN 2008 (http://globocan.iarc.fr), the worldwide age standardized incidence rate (ASR) for HNSCC (and thus OSCC) is 5.3 and 2.5 per 100,000 males and females respectively (Ferlay et al., 2010). In India, the ASR is 9.8 and 5.2 per 100,000 males and females respectively, clearly demonstrating a remarkably high incidence rate of OSCC (Ferlay et al., 2010; http://globocan.iarc.fr). OSCC is a peculiar cancer which is largely preventable and rarely presents as a familial disorder. The most common etiological factors associated with OSCC include tobacco and alcohol consumption (Johnson, 2001). Additionally, high risk human papillomaviruses (HPV strains 16 and 18) as well as genetic predispositions have been implicated. The treatment of OSCC mainly relies on surgical resection of the tumor. The site, size, depth of infiltration and proximity to the bone of the tumor determine whether a combination of surgery with radiation therapy or chemotherapy would be advised (Scully and Bagan, 2009). The concomitant chemo-radiation therapy is the most commonly used strategy in locally advanced cancer. Taxanes (e.g., paclitaxel and docetaxel) and platinum-based induction chemotherapy (e.g., cisplatin) are the options in the treatment of locally advanced cancer. Epidermal growth factor receptor (EGFR) targeted with cetuximab in combination with radiotherapy has been successfully tested in a large randomized trial and thus is currently a new option (Scully and Bagan, 2009). The success of cetuximab has paved the path for the development and implementation of molecules targeting various signaling pathways. Despite extensive research on oral squamous cell carcinoma (OSCC), the five-year survival rate has not changed in several decades with the exception of the targeted treatment strategies involving cetuximab as discussed above. The current chemotherapeutic approaches lack selectivity and are flagitious. Thus, effective treatment of OSCC requires the identification of molecular targets to design appropriate therapeutic strategies. To this end, the present study took three distinct approaches in order to validate the use of existing targets and to reveal novel prognostic biomarkers and therapeutic targets. 1) Targeting the PI3K-AKT-MTOR pathway in OSCC and identification of determinants of its sensitivity. 2) Gene expression analysis of ectopically overexpressed TSC2 to identify new therapeutic targets and prognostic biomarkers as well as to elucidate the genes regulated by it. 3) Expression profiling of CYP1B1 in order to validate the use of CYP1B1 based prodrug therapy in OSCC. Investigations pertaining to the changes in gene and protein expression profiles in malignant as well as pre-malignant lesions have documented the deregulation of the PI3K-AKT-MTOR (phosphoinositide 3-kinase-AKT-mechanistic target of rapamycin) and EGFR (epidermal growth factor receptor) pathways in OSCC which are being widely targeted in many therapeutic strategies (Molinolo et al., 2007; Chakraborty et al., 2008; Matta and Ralhan, 2009; Molinolo et al., 2009; Stransky et al., 2011). The PI3K-AKT-MTOR pathway is a central hub for controlling cellular proliferation and growth in response to various intracellular as well as extracellular stimuli. Crucial signaling cascades including WNT, RAS, HIF-1α and AMPK cross-talk with the PI3K-AKT-MTOR pathway at a variety of molecular junctions. Thus, making this pathway sensitive to perceiving various growth modulatory conditions, ranging from the presence of growth factors to hypoxia and nutrient deprivation (Sengupta et al., 2010; Yang and Guan, 2007). The aberrant expression of the PI3K-AKT-MTOR pathway in OSCC advocated the targeting of this coveted pathway (Chakraborty et al., 2008). In various cancers, the monotherapeutic treatments with inhibitors like LY294002 (PI3K inhibitor) and rapamycin (MTOR inhibitor) demonstrated reduced efficacies. Such reduced efficacies were attributed to the drug toxicity and non-specific action of LY294002 (Davies et al., 2000; Sun et al., 2005; Ikezoe et al., 2007; Wang et al., 2008; Liu et al., 2009), or the ablation of a feedback inhibition loop leading to the reactivation of the PI3K-AKT-MTOR pathway by rapamycin (O'Reilly et al., 2006; Carracedo et al., 2008). Thus, rapamycin or its analogues demonstrated mediocre efficacy due to cytostatic effects in clinical trials, primarily due to the paradoxical activation of major survival kinases namely MAPK and AKT (O'Reilly et al., 2006; Carracedo et al., 2008). The present study aimed at increasing the efficacy of these drugs by incorporating a combinatorial approach. The MTT assay demonstrated that prolonged monotherapeutic treatments with rapamycin led to a modest growth inhibition in three OSCC (KB, SCC131 and SCC084) and HeLa cell lines. Western blot analysis of the phosphorylation status of AKT and RPS6KB1 revealed that monotherapeutic treatments with rapamycin for 96 hr led to the reactivation of the PI3K-AKT-MTOR pathway. Thus, the modest growth inhibitory effect of rapamycin was attributed to the reactivation of the PI3K-AKT-MTOR pathway. A combinatorial treatment approach was hence believed to circumvent this problem in order to increase the efficacy of targeting the PI3K-AKT-MTOR pathway. The PI3K inhibitor LY294002 was used combinatorially with rapamycin. This prolonged dual combinatorial treatment regime was distinctly more efficacious than either of the drugs alone and led to a reduction in cellular viability accompanied by increased sub-G1 population, indicating marked cell death that was characterized as caspase-3 dependent apoptosis. The differential sensitivity of the cell lines towards this combinatorial treatment revealed a novel determinant of the sensitivity, the transactivation of EGFR. The cell lines (SCC131 and SCC084) that were capable of transactivating EGFR were relatively resistant to the dual targeting of PI3K and MTOR in comparison to cell lines that did not transactivate EGFR (HeLa and KB). Further, targeting PI3K, MTOR and EGFR simultaneously was more efficacious in the presence of EGFR transactivation than dually targeting PI3K and MTOR. The results conclusively proved that the combinatorial therapeutic approach dually targeting PI3K and MTOR is a promising treatment strategy as compared to a monotherapeutic treatment and a major factor determining the sensitivity towards this treatment is the status of autophosphorylation of EGFR (Tyr1173) which governs the potential for EGFR transactivation by the combinatorial treatment. Thus, this study demonstrated that the status of EGFR autophosphorylation (Tyr1173) can be used as a biomarker to predict the sensitivity towards the combinatorial targeting of PI3K and MTOR in OSCC. The PI3K-AKT-MTOR pathway is negatively regulated by TSC2 (tuberous sclerosis complex 2; tuberin) (Tee et al., 2002). The importance of the TSC2 gene in the regulation of cell growth and proliferation is irrefutable. TSC2 facilitates the crosstalk between a variety of cellular signals, making it a crucial hub where many cellular networks integrate like AKT, MAPK and AMPK (Clements et al., 2007; Rosner et al., 2007; Rosner et al., 2008). It is a tumor suppressor gene and is downregulated in many cancers including OSCC (Chakraborty et al., 2008). In order to identify the genes regulated by TSC2 in OSCC, we stably overexpressed TSC2 in KB cells and the changes in the gene expression profiles caused by this ectopic overexpression were observed using a whole genome expression microarray. The results showed differential regulation of 268 genes (107 genes were upregulated and 161 genes were downregulated, p<0.05, fold change ≥ 1.5). A majority of these genes were functionally associated with transcription, cell growth and proliferation, apoptosis, cell cycle and neurogenesis. Functional annotation and network analysis was performed by using the DAVID v6.7 and IPA version 8.7 softwares. The microarray data revealed a novel aspect in the crosstalk between WNT signaling and TSC2, namely the transcriptional regulation of WNT signaling by TSC2. Further, in the context of therapeutic applications, the microarray analysis revealed multiple genes that were functionally categorized to be involved in response to radiation, UV and drugs (e.g., SERPINB13 and IL1B). Future studies on the regulation of such genes that are involved in responses to drugs and radiation may give insights into the role of TSC2 in resistance or sensitivity towards chemotherapy and radiation therapy. Moreover, EREG, a member of the epidermal growth factor family, was found to be the most downregulated gene in the microarray analysis. Previous reports have documented elevated levels of EREG in tuberous sclerosis lesions and its association with poor clinical prognosis in OSCC patients (Li et al., 2008; Shigeishi et al., 2008), making its regulatory aspects intriguing. Additionally, published data on the transcriptional functions of TSC2 instigated us to analyze the role of TSC2 in the regulation of EREG. TSC2 has been shown to modulate the transcription mediated by members of the steroid receptor superfamily of genes (Henry et al., 1998) and was shown to bind specifically to ERα and inhibit estrogen induced proliferation (Finlay et al., 2004). Also, TSC2 has been shown to possess C-terminal transcriptional activation domains (Tsuchiya et al., 1996). We have therefore attempted to investigate the transcription related functional aspects of TSC2 by exploiting the observed transcriptional repression of EREG. The physiological roles of TSC1 and TSC2 that are independent of the PI3K-AKT-MTOR pathway have been termed as ‘non-canonical’ (Neuman and Henske, 2011). The repression of EREG by TSC2 was observed to be insensitive to rapamycin, suggesting that it was independent of MTORC1 and thus a non-canonical function of TSC2. To determine whether the repression in EREG was at the level of the promoter, we performed a dual luciferase reporter assay. The results showed that the EREG promoter was repressed by stable as well as transient overexpression of TSC2. In order to elucidate the mechanism of transcriptional regulation by TSC2, we performed the ChIP analysis to observe the in vivo binding of TSC2 to the EREG promoter. In the ChIP analysis with the anti-TSC2 antibody, we observed that TSC2 did not bind to the EREG promoter between the regions -857 bp to -302 bp or -325 bp to +165 bp. Further, in silico analysis revealed an interesting trend among the transcription factors that were differentially regulated by TSC2 and had putative binding sites on the EREG promoter. A majority of these transcription factors (17/21) were downregulated by the overexpression of TSC2. This observation suggested that the repression of EREG could be an indirect effect due to repression of transcription factors caused by overexpression of TSC2. On the whole, this study revealed novel functions of TSC2 in OSCC with implications in determining novel biomarkers and therapeutic targets. As discussed previously, OSCC has a very flagitious treatment regime. A prodrug approach is thought to aid in targeting chemotherapy (Rooseboom et al., 2004). CYP1B1, a member of the cytochrome P450 family, has been implicated in chemical carcinogenesis (Bandiera et al., 2005; Sliwinski et al., 2010). There exists a general accordance that this protein is overexpressed in a variety of cancers (e.g., colon, lung, renal, bladder, prostate, breast, endometrial and esophageal cancers), making it an ideal candidate for a prodrug therapy (McFadyen et al., 1999; Murray et al., 2001; McFadyen et al., 2004; Sissung et al., 2006; Wen and Walle, 2007; Sliwinski et al., 2010). The activation of the prodrug facilitated by CYP1B1 would enable the targeting of chemotherapy to tumor tissues in which CYP1B1 is specifically overexpressed as a result reducing the non-specific side effects that the current chemotherapy elicits (Rooseboom et al., 2004). This study was aimed at validating the use of CYP1B1 as a target for the prodrug therapy in OSCC. The expression profile of CYP1B1 was analysed in a panel of 51 OSCC tumors, their corresponding normal tissues, an epithelial dysplasia lesion and its matched normal tissue by qRT-PCR, Western blotting and Immunohistochemistry. Counterintuitively, CYP1B1 was found to be downregulated in 77.78% (28/36) tumor tissues in comparison to their corresponding normal tissues as well as in the epithelial dysplasia lesion compared to its matched normal tissue at the transcriptional level, and in 92.86% (26/28) of tumor tissues at the protein level. This clearly demonstrated the downregulation of CYP1B1 at the transcriptional and translational levels in tumor tissues in comparison to their corresponding normal tissues. These observations indicate that caution should be observed as this therapy may not be applicable universally to all cancers. Since CYP1B1 has been shown to be involved in the activation of pro-carcinogens (Murray et al., 2001; Bandiera et al., 2005; Sissung et al., 2006), its inhibition could facilitate the development of a prophylactic therapy for oral cancer. Overall, this study has identified the transactivation of EGFR as a determinant of sensitivity towards combinatorial targeting of PI3K and MTOR in OSCC and has demonstrated that the autophosphorylation of EGFR (Tyr1173) can be used as a marker to judge the sensitivity towards this treatment. In the clinical perspective, the identification of such markers would aid in predicting the efficacy of targeted therapies. Such investigations would enable the strategic treatment of OSCC patients, thus decreasing the time lost in trial and errors for determining the appropriate treatment. Additionally, this study elucidated a novel role of TSC2 in the transcriptional repression of EREG, a prognostic biomarker for OSCC. Further, the study revealed potential prognostic biomarkers as well as therapeutic targets that are regulated by TSC2 by using a whole genome expression microarray. Moreover, the counterintuitive downregulation of CYP1B1 in OSCC tumors suggested the possibility of a prophylactic therapy for oral cancer but also advised a precautionary note for the application of prodrug treatments based on CYP1B1 overexpression in OSCC.
57

The influence of p90RSK on FAK-dependent signalling in human oesophageal squamous carcinoma cells

Lachenicht, Candice January 2017 (has links)
Research dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. 28th May 2017. / The focal adhesion kinase or FAK plays an important role in detecting and transducing signals that are generated by cell-substrate attachment (Focal adhesions). When these pathways are activated under atypical conditions they may promote metastasis, uncontrolled proliferation and a chemo-resistant phenotype. However the mechanisms by which this protein is activated ectopically in human oesophageal squamous cell carcinomas cell lines (HOSCC) is unknown. In the current study it was hypothesised that the p90 ribosomal S6 kinase, a key member of multiple pro-survival pathways (activator of the Y-box binding protein-1), activates FAK. RSK may promote FAK activation directly, from its location at the plasma membrane, or it may modulate FAK activation indirectly via the regulation of one of its substrates. RSK inhibits the activation of the glycogen synthase kinase 3β (GSK3β) by phosphorylation at Ser9. GSK3β also localises at focal adhesions and may therefore play a role in mediating FAK activity. To ascertain the role RSK plays in FAK activation, 3 inhibition studies were performed. In the first assay, RSK was specifically inhibited within HOSCC and the levels of active FAK monitored (two different environmental conditions). FAK activation was monitored by detecting the auto-phosphorylation of FAK at Tyr397. A GSK3β inhibition assay was then performed in which GSK3β was specifically inhibited and the levels of active FAK monitored. Lastly, a dual inhibition assay was performed where both RSK and GSK3β were inhibited simultaneously and the levels of active FAK monitored. The overall net changes in the phospho-protein profile indicated that all of the HOSCC cells had distinct cellular responses to the three inhibitor combinations. However RSK did not appear to activate/inhibit FAK activity directly, in most of the HOSCC cells, but rather modulated FAK activation through the inhibition of GSK3β. The effects the RSK/GSK3β pathway had on FAK activation was partially dependent on the HOSCC cells containing active levels of PTEN. Interestingly, the inhibition of both GSK3β and RSK reduced the levels of active FAK in 3 of the 5 HOSCC cell lines, indicating that this might be a good anti-cancer therapeutic. RSK appeared to play a more context specific role in FAK activation within the HOSCC cells suggesting that the grading system for moderately differentiated carcinomas needs to be improved. This paper also highlights the importance of studying the effects the microenvironment has on neoplasmic transformation as varied environmental conditions, during the RSK inhibition studies, drastically impacted the effects the RSK inhibitor had on FAK activation. / MT 2017
58

Characterising the anti-proliferative effects of metformin and assessing its efficacy in combination chemotherapy strategies in-vitro for the treatment of oesophageal squamous cell carcinoma

Jivan, Rupal January 2015 (has links)
Oesophageal Squamous cell Carcinoma (OSCC) has a poor survival rate and is highly prevalent in southern Africa. Cisplatin is the standard therapeutic drug for OSCC, but has poor efficacy due to drug resistance and toxicity. Development of therapies that can be used to reduce the dose of cisplatin or offer a more effective tumour response is of great importance. Metformin is an anti-diabetic drug that has demonstrated anti-proliferative effects in various cancer types. Metformin’s potential as a chemotherapeutic drug is highlighted by its low toxicity profile, ability to reduce growth factor signalling, and toxic effects against cancer stem cells. In this study we combined metformin and cisplatin to find that whilst metformin reduced the proliferation of OSCC cell lines, it antagonised the effects of cisplatin. This was attributed to increased levels of reduced thiols as a consequence of enhanced glycolysis, which leads to the formation of reducing equivalents such as NADPH. Since metformin enhances the intracellular reducing potential, we combined metformin with drugs that are activated in reducing environments. Two copper bis(thiosemicarbazones), Cu-ATSM and Cu-GTSM, both retained their toxicity in the presence of metformin. Disulfiram (DSF), an established anti-alcoholism drug, has previously demonstrated chemotherapeutic potential when conjugated to copper (Cu-DSF). DSF and Cu-DSF both exerted potent cytotoxic effects against OSCC cell lines which were enhanced by metformin. Metformin increased intracellular copper accumulation when combined with DSF and we found that DSF perturbed proteasome function, as observed in other studies. Furthermore, we identified a novel target of DSF, the lysosome, and found that DSF reduces lysosomal pH, which led to increased accumulation of lysosomal protein aggregates, thereby inhibiting autophagy in OSCC cell lines. Therefore, the co-prescription of metformin and cisplatin is not advised for OSCC treatment. However metformin can be effectively combined with DSF, which inhibits multiple protein degradation pathways, to offer a novel treatment option for OSCC.
59

Investigating telomere dynamics in oesophageal squamous carcinoma cells using standard and gold nanoparticle-based assays

Bernert, Martin January 2017 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science Johannesburg, 2017 / Cancer is characterised by abnormal cell proliferation and is one of the leading causes of death in first world countries and the second leading cause in developing countries. In 2012 alone, over 14 million cases were reported and over 8 million deaths were attributed to cancer worldwide, with sub-Saharan Africa, especially South Africa having one of the highest oesophageal cancer rates in the world. An important aspect of cancer is the telomeres, which are 10-15kbp of TTAGGG DNA repeats in humans at the ends of chromosomes. These repeats are maintained by the enzyme telomerase. Up to 90% of all cancers show increased telomerase activity to overcome the "end-replication" problem in which the telomeres shorten after each cell division. This eventually leads to cellular senescence. Due to the high number of cancers relying on increased telomerase activity to bypass senescence, telomerase could be a viable target for anti-cancer therapies. The limiting factor of the multi-subunit telomerase enzyme is its telomerase reverse transcriptase component (hTERT). hTERT has also been shown to migrate to the mitochondria during times of high oxidative stress caused by reactive oxygen species (ROS). Here it confers protection to the mitochondria against ROS, potentially preventing the cell form undergoing apoptosis and reaching senescence. This can potentially be detrimental, as cells become damaged by the ROS and continue dividing. This could lead to further genetic damage. Metformin, a drug used for the treatment of type-2 diabetes, has been linked to lower incidences of cancer. The mode of action of metformin is not yet fully understood, however it is known that it affects the mitochondria. Since hTERT and metformin could co-localise, the drug may influence hTERT and potentially telomerase activity. This makes metformin an anticancer candidate to be used in conjunction with traditional anticancer therapies. To determine telomerase activity in metformin treated oesophageal carcinoma cells, qPCR based telomerase activity assays must be used. These assays can be very expensive and time consuming, so a faster and cheaper alternative would be beneficial. Therefore, the aim of this project was to alter and improve a nanoparticle based detection method for telomerase activity, by decreasing the time required to prepare the DNA functionalised nanoparticles as well as determining a more rapid method of data measurement, and compare it to conventional qPCR based techniques (TRAPeze RT Telomerase Activity Kit – Merck). Thereafter the effects of the metformin treatment on telomere dynamics, such as telomere length, telomerase activity and hTERT mRNA expression, in oesophageal squamous carcinoma cells were determined. Gold nanoparticles were synthesised and functionalised with thiolated-DNA (telomerase substrate). These functionalised particles were characterised using transmission electron microscopy. To assess telomerase activity the extracted protein was added to the functionalised nanoparticle solution and allowed to elongate the coupled DNA. A characteristic of gold nanoparticles is that the size of the particles as well as their proximity to one another determines the colour of the nanoparticle solution. Due to the steric hindrance caused by the now elongated DNA, a distinct colour change was observable. The change in absorption spectra of the nanoparticle solution was recorded after the enzyme elongated the substrate. This nanoparticle based assay was then compared to TRAPeze RT Telomerase detection kit (Merck-Millipore) as a positive control. Using the conventional qPCR based telomerase activity assay, it was found that metformin significantly decreased telomerase activity in oesophageal cancer cell lines, however this was not seen using the nanoparticle assay. A colour change was observed with the nanoparticle assay compared to the negative control reflecting detection of telomerase activity. However, no significant decrease in telomerase activity could be detected due to metformin treatment. More optimisation is required, however this technique has great potential, as nanoparticle based assays are also known for their high sensitivity. This technique is also far more rapid and significantly cheaper that the qPCR based method. The gold nanoparticle based telomerase activity assay could become an alternative to conventional qPCR based techniques. / MT2018
60

Avaliação da expressão da BubR1 em carcinomas orais de células escamosas e lesões orais benignas associadas à infecção pelo Papilomavírus humano (HPV) / Evaluation of BubR1 expression in oral squamous cell carcinomas and benign oral lesions associated with human Papilomavirus (HPV) infection

Lira, Régia Caroline Peixoto 08 October 2009 (has links)
O carcinoma oral de células escamosas (OSCC Oral Squamous Cell Carcinoma) é o câncer de cabeça e pescoço mais comum. Somente no Brasil, foram estimados 14.160 novos diagnósticos para o ano de 2009. O HPV está associado com o aumento no risco do câncer oral, mas seu papel na carcinogênese ainda é controverso. A BubR1, uma proteína importante para o checkpoint de fuso mitótico (SAC Spindle Assembly Checkpoint), tem sido associada com algumas proteínas codificadas por espécies virais e com o câncer. O objetivo do presente estudo foi avaliar a expressão de BubR1 em lesões orais benignas e amostras de OSCC com e sem metástase associadas com infecção pelo HPV. Nós realizamos imunoistoquímica para BubR1 em 16 biópsias de lesão oral benigna e em 70 biópsias de OSCC divididas em três grupos (tumores in situ, tumores invasivos sem metástase e tumores invasivos com metástase), com os respectivos linfonodos das amostras com metástase. A técnica de Nested PCR foi realizada com finalidade de detectar DNA do HPV. Nas lesões malignas, foi observada uma significante superexpressão de BubR1 associada com menor sobrevida (p = 0.0479). Houve também correlação significante (r = 1.000) de BubR1 entre as lesões com metástase e seus respectivos linfonodos. Noventa por cento dos OSCC e 100% das lesões benignas foram HPV positivos. HPV 16 e HPV 18 foram detectados em, respectivamente, 13% e 24% das amostras com OSCC HPV-positivas. O HPV teve maior prevalência (76%) nas amostras com alta expressão de BubR1 e a ausência de DNA viral não influenciou no padrão de expressão de BubR1. Esses resultados sugerem uma provável associação do HPV com a superexpressão de BubR1 em OSCC, o que não se aplica para lesões orais benignas. / Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Only in Brazil, the estimate is that 14,160 new diagnoses will be made in 2009. HPV is associated with increasing risk of oral cancer, but its role in carcinogenesis is still controversial. BubR1, an important protein in the mitotic Spindle Assembly Checkpoint (SAC), has been associated with some virus-encoded proteins and cancer. The aim of the present study was to evaluate the expression of BubR1 in non-malignant oral lesions and OSCC with and without metastasis associated with HPV infection. We performed immunohistochemistry for BubR1 in 16 non-malignant oral lesion biopsies and in 70 OSCC biopsies divided into three groups (in situ tumors, invasive tumors without metastasis and invasive tumors with metastasis) with their respective lymph nodes from samples with metastasis. Nested PCR was performed in order to detect HPV DNA. Significantly higher BubR1 expression associated with shorter survival (p = 0.0479) was observed in malignant lesions. There was also a significant correlation (r = 1.000) with BubR1 expression in lesions with metastasis and their lymph nodes. Ninety percent of OSCC and 100% of benign lesions were HPV positive. HPV 16 and HPV 18 were present in 13% and 24% of HPV-positive OSCC samples, respectively. HPV was more prevalent (76%) in samples with high BubR1 expression and the absence of viral DNA had no influence on BubR1 expression. These findings suggest that HPV could be associated with overexpression of BubR1 in OSCC, but not in benign oral lesions.

Page generated in 0.0554 seconds