Spelling suggestions: "subject:"square""
41 |
Solution of nonlinear least-squares problems /Fraley, Christina. January 1987 (has links)
Thesis (Ph. D.)--Stanford University, 1987. / "June 1987." This research was supported in part by Joseph Oliger under Office of Naval Research contract N00014-82-K-0335, by Stanford Linear Accelerator Center and the Systems Optimization Laboratory under Army Research Office contract DAAG29-84-K-0156. Includes bibliographies.
|
42 |
Semiparametric least squares analysis of the receiver operating characteristic curve /Zhang, Zheng, January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 91-94).
|
43 |
IP algorithm applied to proteomics data /Green, Christopher Lee, January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Statistics, 2004. / Includes bibliographical references (p. 28-29).
|
44 |
Continuous linear filtering theory Kalman's equations.Vaca, Carlos Marco, January 1969 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1969. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
45 |
Sums of Squares of Consecutive IntegersJanuary 2010 (has links)
abstract: ABSTRACT This thesis attempts to answer two questions based upon the historical observation that 1^2 +2^2 +· · ·+24^2 = 70^2. The first question considers changing the starting number of the left hand side of the equation from 1 to any perfect square in the range 1 to 10000. On this question, I attempt to determine which perfect square to end the left hand side of the equation with so that the right hand side of the equation is a perfect square. Mathematically, Question #1 can be written as follows: Given a positive integer r with 1 less than or equal to r less than or equal to 100, find all nontrivial solutions (N,M), if any, of r^2+(r+1)^2+···+N^2 =M^2 with N,M elements of Z+. The second question considers changing the number of terms on the left hand side of the equation to any fixed whole number in the range 1 to 100. On this question, I attempt to determine which perfect square to start the left hand side of the equation with so that the right hand side of the equation is a perfect square. Mathematically, Question #2 can be written as follows: Given a positive integer r with 1 less than or equal to r less than or equal to 100, find all solutions (u, v), if any, of u^2 +(u+1)^2 +(u+2)^2 +···+(u+r-1)^2 =v^2 with u,v elements of Z+. The two questions addressed by this thesis have been on the minds of many mathematicians for over 100 years. As a result of their efforts to obtain answers to these questions, a lot of mathematics has been developed. This research was done to organize that mathematics into one easily accessible place. My findings on Question #1 can hopefully be used by future mathematicians in order to completely answer Question #1. In addition, my findings on Question #2 can hopefully be used by future mathematicians as they attempt to answer Question #2 for values of r greater than 100. / Dissertation/Thesis / M.A. Mathematics 2010
|
46 |
Lower bounds for the number of pairwise orthogonal symmetric Latin squares /Dinitz, Jeffrey H., January 1980 (has links)
No description available.
|
47 |
Best least squares solution of two-point boundary value problemsGentile, Giorlando Enrico. January 1975 (has links)
No description available.
|
48 |
A distributed system for enumerating main classes of sets of orthogonal Latin squaresBenade, Johannes Gerhardus 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: A Latin square is an n n array containing n copies of each of n distinct symbols in such a way
that no symbol is repeated in any row or column. Two Latin squares are orthogonal if, when
superimposed, the ordered pairs in the n2 cells are all distinct. This notion of orthogonality extends
naturally to sets of k > 2 mutually orthogonal Latin squares (abbreviated in the literature
as k-MOLS), which nd application in scheduling problems and coding theory.
In these instances it is important to di erentiate between structurally di erent k-MOLS. It is
thus useful to classify Latin squares and k-MOLS into equivalence classes according to their
structural properties | this thesis is concerned speci cally with main classes of k-MOLS, one
of the largest equivalence classes of sets of Latin squares. The number of main classes of k-MOLS of orders 3 n 8 have been enumerated in the
literature by recursive backtracking algorithms. All enumeration attempts for k-MOLS of order
n > 8 have, however, encountered a computational barrier using current computing technology
in traditional computing paradigms. In this thesis, the feasibility of these enumerations of order
n > 8 is analysed and a potential way of overcoming this computational barrier is proposed.
A backtracking enumeration algorithm from the literature is implemented and validated, after
which novel estimates of the sizes of the enumeration search trees for k-MOLS of orders n > 8
produced by this backtracking algorithm are presented.
It is also advocated that the above-mentioned computational barrier may be overcome by volunteer
computing, a computing paradigm in which large computations are distributed over
thousands or even millions of volunteered computing devices, such as desktop computers and
Android cellphones. A volunteer computing project is designed for the distributed enumeration
of main classes of k-MOLS. Initial test results obtained from this volunteer computing project
have called for a novel work unit issuing policy which allows the participating host resources to
be utilised e ectively during enumerations of main classes of k-MOLS of arbitrary orders.
A local pilot study involving the enumeration of main classes of 3-MOLS of order 8 has con rmed
the feasibility of adopting the volunteer computing project as an avenue of approach towards
the enumeration of k-MOLS of orders n > 8 and preliminary results of an ongoing enumeration
attempt for the main classes of 7-MOLS of order 9 are presented. / AFRIKAANSE OPSOMMING: 'n Latynse vierkant is 'n n n skikking wat n kopie e van elk van n verskillende simbole bevat sodat
geen simbool in enige ry of kolom daarvan herhaal word nie. Indien twee Latynse vierkante op
mekaar gesuperponeer word, en die geordende pare simbole wat sodoende in die n2 selle gevorm
word, almal verskillend is, word die vierkante ortogonaal genoem. Die begrip van ortogonaliteit
veralgemeen op 'n natuurlike wyse na k > 2 onderling ortogonale Latynse vierkante (wat in die
internasionale literatuur as k-MOLS afgekort word) en vind toepassing in skeduleringsprobleme
en kodeerteorie.
In hierdie toepassings is dit belangrik om 'n onderskeid te tref tussen struktureel verskillende k-
MOLS. Dit is gevolglik nuttig om Latynse vierkante en k-MOLS in ekwivalensieklasse volgens hul
strukturele eienskappe te klassi seer. In hierdie verhandeling word daar gefokus op hoofklasse
van k-MOLS, een van die grootste ekwivalensieklasse van versamelings Latynse vierkante.
Die getal hoofklasse van k-MOLS van ordes 3 n 8 is in die literatuur deur middel van
rekursiewe algoritmes met terugkering getel. Geen poging om hoofklasse van k-MOLS van ordes
n > 8 te tel, kon egter daarin slaag om 'n berekeningstruikelblok te oorkom wat as gevolg van
huidige rekentegnologiese beperkings bestaan nie. In hierdie verhandeling word die haalbaarheid
van sulke telpogings vir orde n > 8 ondersoek en word 'n metode voorgestel waarmee hierdie
berekeningstruikelblok moontlik oorkom kan word.
'n Bestaande telalgoritme met terugkering word ge mplementeer en gevalideer, waarna nuwe
afskattings van die groottes van die soekbome vir hoofklasse van k-MOLS van ordes n > 8 wat
deur hierdie algoritme deurstap moet word, daargestel word.
Daar word geargumenteer dat die bogenoemde berekeningstruikelblok moontlik oorkom kan word
deur gebruik te maak van 'n grootskaalse parallelle rekenparadigma waarin groot berekeninge
oor duisende of selfs miljoene rekentoestelle, soos tafelrekenaars of Android sellul^ere telefone
wat vrywillig deur gebruikers vir hierdie doel beskikbaar gemaak word. So 'n verspreide berekeningsprojek
word vir hoofklasse van k-MOLS ontwerp. Aanvanklike resultate wat uit hierdie
projek voortgespruit het, het 'n nuwe beleid genoodsaak waarvolgens werkeenhede aan deelnemende
rekentoestelle op s o 'n wyse uitgedeel word dat die projek doeltre end van hulpbronne
gebruik maak, selfs wanneer hoofklasse van k-MOLS van arbitr^ere ordes bepaal word.
'n Lokale proefstudie word geloods waartydens bekende telresultate vir hoofklasse van k-MOLS
van orde 8 bevestig word. Die haalbaarheid van 'n verspreide berekeningsbenadering, waaraan
baie vrywilligers kan deelneem om hoofklasse van k-MOLS van orde n > 8 te tel, word ondersoek
en die resultate van 'n huidige verspreide berekeningspoging om hoofklasse van 7-MOLS van orde
9 te tel, word gerapporteer.
|
49 |
Applications of experimental design and calibration in analytical chemistry and improved chlorophyll measurement techniquesHernandez, Pedro Wilfredo Araujo January 1997 (has links)
No description available.
|
50 |
The generalized least square estimation of polychoric correlation.January 1985 (has links)
by Shiu-kwok Lau. / Bibliography: leaves 41-43 / Thesis (M.Ph.)--Chinese University of Hong Kong, 1985
|
Page generated in 0.0521 seconds