1 |
The Role of Cavitation in Enhancement of rt-PA ThrombolysisDATTA, SAURABH January 2007 (has links)
No description available.
|
2 |
Caractérisation et régulation des régimes de cavitation ultrasonore pour la sonoporation cellulaire / Characterization and control of the regimes of ultrasonic cavitation for cells sonoporationCornu, Corentin 03 July 2018 (has links)
Dans l’objectif de limiter les effets destructeurs de l’implosion de bulles de cavitation ultrasonore, un régime d’oscillations stables de bulles doit potentiellement être visé pour des applications thérapeutiques sensibles comme l’ouverture de la barrière hémato-encéphalique. Cependant, garantir une activité d’oscillations stables est difficile de par le caractère stochastique de la cavitation ultrasonore, et de la coexistence de bulles oscillantes (cavitation stable) et implosantes (cavitation inertielle) au sein d’un nuage de bulles. Il est donc nécessaire de contrôler spatialement et temporellement le phénomène de cavitation en discriminant les régimes de cavitation stable ou inertielle, au cours de la durée d’un tir ultrasonore, et ce en régime pulsé. Dans une première étude, la dynamique d’un nuage de bulles monodisperses et uniformément réparties dans l’espace met en évidence l’effet de l’interaction entre bulles sur le seuil de cavitation stable : il s’abaisse en pression et la fréquence de résonance des bulles se décale en fonction de la densité de bulle. Il est ainsi montré qu’il existe une densité de bulle optimale pour l’émission de la composante sous-harmonique. Ensuite, une stratégie de contrôle est développée, basée sur une boucle de rétroaction régulant la signature acoustique d’un régime donné de cavitation. L’utilisation de la stratégie d’asservissement permet de discriminer les régimes de cavitation stable et inertielle au cours du temps, mais aussi de garantir une activité de cavitation plus stable temporellement, plus reproductible, et ce pour des énergies acoustiques moyennes délivrées inférieures. Enfin, le processus de contrôle est utilisé expérimentalement pour des applications in-vitro de sonoporation cellulaire. Tout d’abord, une étude de sonoporation en cavitation inertielle régulée met en évidence l’amélioration de la reproductibilité des taux de sonoporation obtenus, et la possibilité de s’affranchir de l’utilisation d’agents de contraste comme agents de nucléation. Ensuite, une étude en cavitation stable régulée met en évidence la possibilité de sonoporer des cellules en limitant les activités de cavitation inertielle, et donc potentiellement en limitant la lyse cellulaire / In the aim of limiting the destructive behavior of collapsing cavitation bubbles, an exclusively stable cavitation state is targeted for sensitive therapeutics applications like blood-brain barrier opening. Ensuring a stable cavitation regime is complex because of (i) the coexistence of stably oscillating bubbles and collapsing bubbles in the same bubble cloud, and (ii) the stochastic behavior of the phenomenon during time. Therefore, it is necessary to control spatially and temporally the cavitation activity, by discriminating the stable from the inertial regime. Firstly, the theoretical study of the dynamics of a monodisperse and homogeneous cloud shows a modification of the stable cavitation threshold as a function of the bubble density: the subharmonics emission threshold is lowered and the resonance frequency is shifted. The study leads also to the expression of a particular microbubbles density leading to optimized subharmonics emission. Secondly, a real-time control strategy based on a feedback loop process on subharmonics emission is designed. The use of this strategy allows discriminating the two cavitation states during time, and ensures a better reproducibility, time-stability and an acoustic energy gain. The control device is used for cells sonoporation in-vitro. In a first study, the sonoporation by inertial cavitation control is performed in a stationary ultrasonic field configuration. This leads to high sonoporation efficiency coupled to the possibility of counterbalancing the use of supplementary nuclei (encapsulated microbubbles). In a second one, the stable cavitation control applied in a focused ultrasound configuration field pinpoints the possibility of sonoporating cells without inertial cavitation, and then to limit cell lysis
|
3 |
Dynamics of Multi-functional Acoustic Holograms in Contactless Ultrasonic Energy Transfer SystemsBakhtiari Nejad, Marjan 28 August 2020 (has links)
Contactless ultrasonic power transfer (UPT), using piezoelectric transducers, is based on transferring energy using acoustic waves, in which the waves are generated by an acoustic source or transmitter and then transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver then converts the mechanical strain induced by the incident acoustic waves to electricity and delivers to an electrical load, in which the electrical power output of the system can be determined. The execution and efficiency of this technology can be significantly enhanced through patterning, focusing, and localization of the transmitted acoustic energy in space to simultaneously power pre-determined distributed sensors or devices. A passive 3D-printed acoustic hologram plate alongside a single transducer can generate arbitrary and pre-designed ultrasound fields in a particular distance from the hologram mounted on the transmitter, i.e., a target plane. This dissertation presents the use of these simple, cost-effective, and high-fidelity acoustic holograms in UPT systems to selectively enhance and pattern the electrical power output from the receivers. Different holograms are numerically designed to create single and multi-focal pressure patterns in a target plane where an array of receivers are placed. The incident sound wave from a transmitter, after passing through the hologram, is manipulated, hence, the output field is the desired pressure field, which excites the receivers located at the pre-determined focal points more significantly. Furthermore, multi-functional holograms are designed to generate multiple images at different target planes and driving frequencies, called, respectively, multi-image-plane and multi-frequency patterning holograms. The multiple desired pressure distributions are encoded on the single hologram plate and each is reconstructed by changing the axial distance and by switching the frequency. Several proof-of-concept experiments are performed to verify the functionality of the computationally designed holograms, which are fabricated using modern 3D-printers, i.e., the desired wavefronts are encoded in the hologram plates' thickness profile, being input to the 3D-printer. The experiments include measurement of output pressure fields in water using needle hydrophones and acquisition of receivers' voltage output in UPT systems.
Another technique investigated in this dissertation is the implementation of acoustic impedance matching layers deposited on the front leading surface of the transmitter and receiver transducers. Current UPT systems suffer from significant acoustic losses through the transmission line from a piezoelectric transmitter to an acoustic medium and then to a piezoelectric receiver. This is due to the unfavorable acoustic impedance mismatch between the transducers and the medium, which causes a narrow transducer bandwidth and a considerable reflection of the acoustic pressure waves at the boundary layers. Using matching layers enhance the acoustic power transmission into the medium and then reinforce the input as an excitation into the receiver. Experiments are performed to identify the input acoustic pressure from a cylindrical transmitter to a receiver disk operating in the 33-mode of piezoelectricity. Significant enhancements are obtained in terms of the receiver's electrical power output when implementing a two-layer matching structure. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a high-intensity focused ultrasound (HIFU)-excited microbubble or stable acoustic cavitation, which includes the effects of acoustic nonlinearity, diffraction, and absorption of the medium, and entails the problem of several biomedical ultrasound applications. Finally, the design and use of acoustic holograms in microfluidic channels are addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems. / Doctor of Philosophy / This dissertation presents several techniques to enhance the wireless transfer of ultrasonic energy in which the sound wave is generated by an acoustic source or transmitter, transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver transducer then converts the vibrational energy into electricity and delivers to an electrical load in which the electrical power output from the system can be determined. The first enhancement technique presented in this dissertation is using a pre-designed and simple structured plate called an acoustic hologram in conjunction with a transmitter transducer to arbitrarily pattern and shape ultrasound fields at a particular distance from the hologram mounted on the transmitter. The desired wavefront such as single or multi-focal pressure fields or an arbitrary image such as a VT image pattern can simply be encoded in the thickness profile of this hologram plate by removing some of the hologram material based on the desired shape. When the sound wave from the transmitter passes this structured plate, it is locally delayed in proportion to the hologram thickness due to the different speed of sound in the hologram material compared to water. In this dissertation, various hologram types are designed numerically to implement in the ultrasonic power transfer (UPT) systems for powering receivers located at the predetermined focal points more significantly and finally, their functionality and performances are verified in several experiments.
Current UPT systems suffer from significant acoustic losses through the transmission from a transmitter to an acoustic medium and then to a receiver due to the different acoustic impedance (defined as the product of density and sound speed) between the medium and transducers material, which reflects most of the incident pressure wave at the boundary layers. The second enhancement technology addressed in this dissertation is using intermediate materials, called acoustic impedance matching layers, bonded to the front side of the transmitter and receiver face to alleviate the acoustic impedance mismatch. Experiments are performed to identify the input acoustic pressure from a transmitter to a receiver. Using a two-layer matching structure, significant enhancements are observed in terms of the receiver's electrical power output. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a microbubble exposed to a high-intensity focused ultrasound (HIFU) field, which entails the problem of several biomedical ultrasound applications such as microbubble-mediated ultrasound therapy or targeted drug delivery. Finally, an enhancement technique involving the design and use of acoustic holograms in microfluidic channels is addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems.
|
Page generated in 0.1152 seconds