1 |
Approximating stable densities with Padé approximants and asymptotic seriesLiang, Jiaxi January 2011 (has links)
In this thesis, we are interested in using the Padé approximants and asymptotic series to approximate the density functions of the stable distributions. The paper specifically discusses the selection of the optimal degree and central point of Padé approximants as well as how to connect the Padé approximants and asymptotic series as a piecewise function. Based on such approximation, a computational algorithm is developed to estimate the maximum likelihood estimator with confidence interval of the parameters, using quasi-Newton method. Simulations are conducted to evaluate the performance of this algorithm, and comparisons are made to Nolan's integral method to show that the method introduced in the thesis is fast and reliable in approximation and estimation.
|
2 |
Approximating stable densities with Padé approximants and asymptotic seriesLiang, Jiaxi January 2011 (has links)
In this thesis, we are interested in using the Padé approximants and asymptotic series to approximate the density functions of the stable distributions. The paper specifically discusses the selection of the optimal degree and central point of Padé approximants as well as how to connect the Padé approximants and asymptotic series as a piecewise function. Based on such approximation, a computational algorithm is developed to estimate the maximum likelihood estimator with confidence interval of the parameters, using quasi-Newton method. Simulations are conducted to evaluate the performance of this algorithm, and comparisons are made to Nolan's integral method to show that the method introduced in the thesis is fast and reliable in approximation and estimation.
|
3 |
ESTIMATION AND APPROXIMATION OF TEMPERED STABLE DISTRIBUTIONShi, Peipei 17 May 2010 (has links)
No description available.
|
4 |
Zobecněná stabilní rozdělení a jejich aplikace / Generalized stable distributions and their applicationsSlámová, Lenka January 2015 (has links)
Title: Generalized stable distributions and their applications Author: Mgr. Lenka Slámová, MSc. Department: Department of probability and mathematical statistics Supervisor: Prof. Lev Klebanov, DrSc. Abstract: This thesis deals with different generalizations of the strict stability property with a particular focus on discrete distributions possessing some form of stability property. Three possible definitions of discrete stability are introduced, followed by a study of some particular cases of discrete stable distributions and their properties. The random normalization used in the definition of discrete stability is applicable for continuous random variables as well. A new concept of casual stability is introduced by replacing classical normalization in the definition of stability by random normalization. Examples of casual stable distributions, both discrete and continuous, are given. Discrete stable distributions can be applied in discrete models that exhibit heavy tails. Applications of discrete stable distributions on rating of scientific work and financial time series modelling are presented. A method of parameter estimation for discrete stable family is also introduced. Keywords: discrete stable distribution, casual stability, discrete approximation of stable distribution
|
5 |
Computing VaR via Nonlinear AR model with heavy tailed innovationsLi, Ling-Fung 28 June 2001 (has links)
Many financial time series show heavy tail behavior. Such tail characteristic is important for risk management.
In this research, we focus on the calculation of Value-at-Risk (VaR) for portfolios of financial assets. We consider nonlinear autoregressive models with heavy tail innovations to model the return.
Predictive distribution of the return are used to compute the VaR of the portfolios of financial assets.
Examples are also given to compare the VaR computed by our approach with those by other methods.
|
6 |
Stabilieji skirstiniai finansų rinkų modeliavime / Stable distributions in finance markets modelingŠakytė, Edita 16 August 2007 (has links)
Stabilieji skirstiniai yra plati tikimybinių skirstinių klasė. Atsitiktiniai dydžiai, pasiskirstę pagal stabiliuosius skirstinius, pasižymi savybe – jų suma taip pat yra stabili. Šie pasižymi sunkiomis uodegomis ir, kai kuriais atvejais, asimetriškumu. Taigi jie gerai aprašo duomenis. Pagrindinis šių skirstinių trūkumas yra tas, kad nežinomos tikslios pasiskirstymo ir tankio funkcijų išraiškos (išskyrus kelis atvejus: normalusis, Koši ir Levi skirstiniai). Darbo pradžioje pateikta stabiliųjų skirtinių apžvalga bei jų pritaikymas finansų rinkose. Aprašytos pagrindinės stabiliųjų skirstinių savybės, įverčių skaičiavimo algoritmai bei optimalaus portfelio sudarymas ir jo vertės pokyčio rizikos mato (VaR) skaičiavimas. Antroje darbo dalyje nagrinėjamas optimaliojo investicinio portfelio „normalioje“ ir „stabilioje“ rinkoje sudarymas. Rizikos matu laikomas sklaidos parametras (stabiliuoju atveju) arba standartinis nuokrypis, padalintas iš kvaratinės šaknies iš 2, (normaliuoju atveju). Palyginami portfeliai, sudaryti iš septyniolikos lietuviškų akcijų, gauti pagal skirtingas tikimybines prielaidas. Parodyta, kad optimalieji portfeliai skiriasi, kuomet duomenys yra pasiskirstę pagal stabilųjį ir normalųjį skirstinius. / Stable distributions are a rich class of probability distributions that allow skewness and heavy tails. The lack of closed formulas for densities and distribution functions for all distributions (except Gaussian, Cauchy and Levy distributions) is the major drawback. There is an overview of the stable distributions and their applications in finance markets at the beginning of this paper. There are described basic properties of stable distributions, estimation algorithms and optimal asset allocation and stable computation of Value at Risk in the first part of the work. We analyze an investment allocation problems in this work. We consider as the risk measure the estimate of scale parameter (in the stable case) or the expected value of absolute deviation divided by square root of 2 (in Gaussian case). We examine the optimal allocation between seventeen risky assets with normal or stable distributed returns and then we compare the allocation obtained under the Gaussian and stable distributional assumptions. We show that there are differences in the allocation when the data follow the stable non-Gaussian and the normal distribution.
|
7 |
On the Performance Analysis of Digital Communication Systems Perturbed by Non-Gaussian Noise and InterferenceSoury, Hamza 29 June 2016 (has links)
The Gaussian distribution is typically used to model the additive noise affecting communication systems. However, in many cases the noise cannot be modeled by a Gaussian distribution. In this thesis, we investigate the performance of different communication systems perturbed by non-Gaussian noise. Three families of noise are considered in this work, namely the generalized Gaussian noise, the Laplace noise/interference, and the impulsive noise that is modeled by an α-stable distribution. More specifically, in the first part of this thesis, the impact of an additive generalized Gaussian noise is studied by computing the average symbol error rate (SER) of one dimensional and two dimensional constellations in fading environment. We begin by the simple case of two symbols, i.e. binary phase shift keying (BPSK) constellation. From the results of this constellation, we extended the work to the average SER of an M pulse amplitude modulation (PAM). The first
2 − D constellation is the M quadrature amplitude modulation (QAM) (studied for two geometric shapes, namely square and rectangular), which is the combination of two orthogonal PAM signals (in-phase and quadrature phase PAM). In the second part, the system performance of a circular constellation, namely M phase shift keying (MPSK) is studied in conjunction with a Laplace noise with independent noise components. A closed form and an asymptotic expansion of the SER are
derived for two detectors, maximum likelihood and minimum distance detectors. Next, we look at the intra cell interference of a full duplex cellular network which is shown to follow a Laplacian distribution with dependent, but uncorrelated, complex components. The densities of that interference are expressed in a closed form in order to obtain the SER of several communication systems (BPSK, PAM, QAM, and MPSK). Finally, we study the statistics of the α-stable distribution. Those statistics are expressed in closed form in terms of the Fox H function and used to get the SER of BPSK, PAM, and QAM constellations. An approximation and an asymptotic expansion for high signal to noise ratio are presented also and their efficiency is proved using Monte Carlo simulations. It is worth mentioning that all the error rates presented in this work are averaged over a generalized flat fading, namely the extended generalized K, which has the ability to capture most of the known fading distribution. Many special cases are treated and simpler closed form expressions of the probability of error are derived and compared to some previous reported results.
|
8 |
Power Law Systems and Heterogeneous Fractal Properties of Cryptocurrency Markets / 暗号通貨の価格変動におけるべき乗則性とフラクタル性Kakinaka, Shinji 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24740号 / 情博第828号 / 新制||情||139(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 梅野 健, 教授 山下 信雄, 准教授 加嶋 健司 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
9 |
The Energy Goodness-of-fit Test for Univariate Stable DistributionsYang, Guangyuan 26 July 2012 (has links)
No description available.
|
10 |
A test for Non-Gaussian distributions on the Johannesburg stock exchange and its implications on forecasting models based on historical growth rates.Corker, Lloyd A January 2002 (has links)
Masters of Commerce / If share price fluctuations follow a simple random walk then it implies that forecasting models based on historical growth rates have little ability to forecast acceptable share price movements over a certain period. The simple random walk description of share price dynamics is obtained when a large number of investors have equal probability to buy or sell based on their own opinion. This simple random walk description of the stock market is in essence the Efficient Market Hypothesis, EMT. EMT is the central concept around which financial modelling is based which includes the Black-Scholes model and other important theoretical underpinnings of capital market theory like mean-variance portfolio selection, arbitrage pricing theory (APT), security market line and capital asset pricing model (CAPM). These theories, which postulates that risk can be reduced to zero sets the foundation for option pricing and is a key component in financial
software packages used for pricing and forecasting in the financial industry. The model used by Black and Scholes and other models mentioned above are Gaussian, i.e. they exhibit a random nature. This Gaussian property and the existence of expected returns and continuous time paths (also Gaussian properties) allow the use of stochastic calculus to solve complex Black- Scholes models. However, if the markets are not Gaussian then the idea that risk can be. (educed to zero can lead to a misleading and potentially disastrous sense of security on the financial markets. This study project test the null hypothesis - share prices on the JSE follow a random walk - by means of graphical techniques such as symmetry plots and Quantile-Quantile plots to analyse the test distributions. In both graphical techniques evidence for the rejection of normality was found. Evidenceleading to the rejection of the hypothesis was also found through nonparametric or distribution free methods at a 1% level of significance for Anderson-Darling and Runs test.
|
Page generated in 0.1019 seconds