• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 10
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogen embrittlement testing of austenitic stainless steels SUS 316 and 316L

Bromley, Darren Michael 11 1900 (has links)
The imminent emergence of the hydrogen fuel industry has resulted in an urgent mandate for very specific material testing. Although storage of pressurized hydrogen gas is both practical and attainable, demands for increasing storage pressures (currently around 70 MPa) continue to present unexpected material compatibility issues. It is imperative that materials commonly used in gaseous hydrogen service are properly tested for hydrogen embrittlement resistance. To assess material behavior in a pressurized hydrogen environment, procedures were designed to test materials for susceptibility to hydrogen embrittlement. Of particular interest to the field of high-pressure hydrogen in the automotive industry, austenitic stainless steels SUS 316 and 316L were used to validate the test programs. Tests were first performed in 25 MPa helium and hydrogen at room temperature and at -40°C. Tests in a 25 MPa hydrogen atmosphere caused embrittlement in SUS 316, but not in 316L. This indicated that alloys with higher stacking fault energies (316L) are more resistant to hydrogen embrittlement. Decreasing the test temperature caused slight embrittlement in 316L and significantly enhanced it in 316. Alternatively, a second set of specimens was immersed in 70 MPa hydrogen at 100°C until reaching a uniform concentration of absorbed hydrogen. Specimens were then loaded in tension to failure to determine if a bulk saturation of hydrogen provided a similar embrittling effect. Neither material succumbed to the effects of gaseous pre-charging, indicating that the embrittling mechanism requires a constant supply of hydrogen at the material surface rather than having bulk concentration of dissolved hydrogen. Permeation tests were also performed to ensure that hydrogen penetrated the samples and to develop material specific permeation constants. To pave the way for future work, prototype equipment was constructed allowing tensile or fatigue tests to be performed at much higher hydrogen pressures. To determine the effect of pressure on hydrogen embrittlement, additional tests can be performed in hydrogen pressures up to 85 MPa hydrogen. The equipment will also allow for cyclic loading of notched tensile or compact tension specimens for fatigue studies.
2

Hydrogen embrittlement testing of austenitic stainless steels SUS 316 and 316L

Bromley, Darren Michael 11 1900 (has links)
The imminent emergence of the hydrogen fuel industry has resulted in an urgent mandate for very specific material testing. Although storage of pressurized hydrogen gas is both practical and attainable, demands for increasing storage pressures (currently around 70 MPa) continue to present unexpected material compatibility issues. It is imperative that materials commonly used in gaseous hydrogen service are properly tested for hydrogen embrittlement resistance. To assess material behavior in a pressurized hydrogen environment, procedures were designed to test materials for susceptibility to hydrogen embrittlement. Of particular interest to the field of high-pressure hydrogen in the automotive industry, austenitic stainless steels SUS 316 and 316L were used to validate the test programs. Tests were first performed in 25 MPa helium and hydrogen at room temperature and at -40°C. Tests in a 25 MPa hydrogen atmosphere caused embrittlement in SUS 316, but not in 316L. This indicated that alloys with higher stacking fault energies (316L) are more resistant to hydrogen embrittlement. Decreasing the test temperature caused slight embrittlement in 316L and significantly enhanced it in 316. Alternatively, a second set of specimens was immersed in 70 MPa hydrogen at 100°C until reaching a uniform concentration of absorbed hydrogen. Specimens were then loaded in tension to failure to determine if a bulk saturation of hydrogen provided a similar embrittling effect. Neither material succumbed to the effects of gaseous pre-charging, indicating that the embrittling mechanism requires a constant supply of hydrogen at the material surface rather than having bulk concentration of dissolved hydrogen. Permeation tests were also performed to ensure that hydrogen penetrated the samples and to develop material specific permeation constants. To pave the way for future work, prototype equipment was constructed allowing tensile or fatigue tests to be performed at much higher hydrogen pressures. To determine the effect of pressure on hydrogen embrittlement, additional tests can be performed in hydrogen pressures up to 85 MPa hydrogen. The equipment will also allow for cyclic loading of notched tensile or compact tension specimens for fatigue studies.
3

Hydrogen embrittlement testing of austenitic stainless steels SUS 316 and 316L

Bromley, Darren Michael 11 1900 (has links)
The imminent emergence of the hydrogen fuel industry has resulted in an urgent mandate for very specific material testing. Although storage of pressurized hydrogen gas is both practical and attainable, demands for increasing storage pressures (currently around 70 MPa) continue to present unexpected material compatibility issues. It is imperative that materials commonly used in gaseous hydrogen service are properly tested for hydrogen embrittlement resistance. To assess material behavior in a pressurized hydrogen environment, procedures were designed to test materials for susceptibility to hydrogen embrittlement. Of particular interest to the field of high-pressure hydrogen in the automotive industry, austenitic stainless steels SUS 316 and 316L were used to validate the test programs. Tests were first performed in 25 MPa helium and hydrogen at room temperature and at -40°C. Tests in a 25 MPa hydrogen atmosphere caused embrittlement in SUS 316, but not in 316L. This indicated that alloys with higher stacking fault energies (316L) are more resistant to hydrogen embrittlement. Decreasing the test temperature caused slight embrittlement in 316L and significantly enhanced it in 316. Alternatively, a second set of specimens was immersed in 70 MPa hydrogen at 100°C until reaching a uniform concentration of absorbed hydrogen. Specimens were then loaded in tension to failure to determine if a bulk saturation of hydrogen provided a similar embrittling effect. Neither material succumbed to the effects of gaseous pre-charging, indicating that the embrittling mechanism requires a constant supply of hydrogen at the material surface rather than having bulk concentration of dissolved hydrogen. Permeation tests were also performed to ensure that hydrogen penetrated the samples and to develop material specific permeation constants. To pave the way for future work, prototype equipment was constructed allowing tensile or fatigue tests to be performed at much higher hydrogen pressures. To determine the effect of pressure on hydrogen embrittlement, additional tests can be performed in hydrogen pressures up to 85 MPa hydrogen. The equipment will also allow for cyclic loading of notched tensile or compact tension specimens for fatigue studies. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
4

Atomic-Scale Deformation Mechanisms and Phase Stability in Concentrated Alloys

LaRosa, Carlyn Rae 14 October 2021 (has links)
No description available.
5

Effect of temperature on mechanical response of austenitic materials

Calmunger, Mattias January 2011 (has links)
Global increase in energy consumption and global warming require more energy production but less CO2emission. Increase in efficiency of energy production is an effective way for this purpose. This can be reached by increasing boiler temperature and pressure in a biomass power plant. By increasing material temperature 50°C, the efficiency in biomass power plants can be increased significantly and the CO2emission can be greatly reduced. However, the materials used for future biomass power plants with higher temperature require improved properties. Austenitic stainless steels are used in most biomass power plants. In austenitic stainless steels a phenomenon called dynamic strain aging (DSA), can occur in the operating temperature range for biomass power plants. DSA is an effect of interaction between moving dislocations and solute atoms and occurs during deformation at certain temperatures. An investigation of DSA influences on ductility in austenitic stainless steels and nickel base alloys have been done. Tensile tests at room temperature up to 700°C and scanning electron microscope investigations have been used. Tensile tests revealed that ductility increases with increased temperature for some materials when for others the ductility decreases. This is, probably due to formation of twins. Increased stacking fault energy (SFE) gives increased amount of twins and high nickel content gives a higher SFE. Deformation mechanisms observed in the microstructure are glide bands (or deformations band), twins, dislocation cells and shear bands. Damage due to DSA can probably be related to intersection between glide bands or twins, see figure 6 a). Broken particles and voids are damage mechanisms observed in the microstructure.
6

Generalised stacking fault energy and plastic deformation of austenitic stainless steels

Molnar, David January 2018 (has links)
Austenitic stainless steels are primarily known for their exceptional corrosion resistance. They have the face centred cubic (FCC) structure which is stabilised by adding nickel to the Fe-Cr alloy. The Fe-Cr-Ni system can be further extended by adding other elements such as Mn, Mo, N, C, etc. in order to improve the properties. Since austenitic stainless steels are often used as structural materials, it is important to be able to predict their mechanical behaviour based on their composition, microstructure, magnetic state, etc. In this work, we investigate the plastic deformation behaviour of austenitic stainless steels by theoretical and experimental approaches. In FCC materials the stacking fault energy (SFE) plays an important role in the prediction of the deformation modes. Based on the magnitude of the SFE different deformation modes can be observed such as martensite formation, deformation twinning, dissociated or undissociated dislocation glide. All these features influence the behaviour differently, therefore it is desired to be able to predict their occurrence. Alloying and temperature have strong effect on the SFE and thus on the mechanical properties of the alloys. Several models based on the SFE and more recently on the so called generalised stacking fault energy (GSFE or γ-surface) are available to predict the alloy's affinity to twinning and the critical twinning stress representing the minimum resolved shear stress required to initiate the twinning deformation mechanism. One can employ well established experimental techniques to measure the SFE. On the other hand, one needs to resort to ab initio calculations based on density functional theory (DFT) to compute the GSFE of austenitic steels and derive parameters like the twinnability and the critical twinning stress.  We discuss the effect of the stacking fault energy on the deformation behaviour for two different austenitic stainless steels. We calculate the GSFE of the selected alloys and based on different models, we predict their tendency for twinning and the critical twinning stress. The theoretical predictions are contrasted with tensile tests and electron backscatter diffraction (EBSD) measurements. Several conventional and in situ tensile test are performed to verify the theoretical results. We carry out EBSD measurements on interrupted and fractured specimens and during tensile tests to closely follow the development of the microstructure. We take into account the role of the intrinsic energy barriers in our predictions and introduce a new and so far unique way to experimentally obtain the GSFE of austenitic stainless steels. Previously, only the SFE could be measured precisely by well-designed experiments. In the present thesis we go further and propose a technique that can provide accurate unstable stacking fault energy values for any austenitic alloy exhibiting twinning. / Austenitiska rostfria stål är främst kända för sin exceptionella korrosionsbeständighet. De har en ytcentrerad kubisk (FCC) struktur som stabiliseras genom att nickel tillsätts till Fe-Cr legeringen. Fe-Cr-Ni-systemet kan utökas ytterligare genom tillsats av andra element såsom Mn, Mo, N, C, etc. för att förbättra egenskaperna. Eftersom austenitiska rostfria stål ofta används som konstruktionsmaterial är det viktigt att kunna förutsäga deras mekaniska egenskaper baserat på deras sammansättning, mikrostruktur, magnetiska tillstånd, etc. I denna avhandling undersöker vi det plastiska deformationsbeteendet hos austenitiska rostfria stål både teoretiskt och experimentellt. I FCC material spelar staplingsfelsenergin (SFE) en viktig roll vid förutsägelsen av deformationsmekanism. Baserat på storleken av SFE kan olika deformationsmekanismer observeras, såsom martensitbildning, tvillingbildning, dissocierad eller odissocierad dislokationsglidning. Alla dessa funktioner påverkar beteendet på olika sätt, därför är det önskvärt att kunna förutsäga deras förekomst. Legering och temperatur har stark inverkan på SFE och därmed legeringarnas mekaniska egenskaper. Flera modeller, baserade på SFE och mer nyligen på den så kallade generaliserade staplingsfelenergin (GSFE eller γ-surface), är tillgängliga för att förutsäga legeringens benägenhet till tvillingbildning och den kritiska spänning som representerar den minsta upplösta skjuvspänningen som krävs för att initiera tvillingbildning. Man kan använda ab initio beräkningar baserade på täthetsfunktionalteori (DFT) för att beräkna GSFE för austenitiska stål och härleda parametrar som twinnability och kritisk tvillingsspänning. Vi diskuterar effekten av staplingsfelenergi på deformationsbeteendet för två olika austenitiska rostfria stål. Vi beräknar GSFE för de valda legeringarna och baserat på olika modeller, förutsäger vi deras tendens till tvillingbildning och den kritiska tvillingsspänningen. De teoretiska förutsägelserna jämförs med resultat från dragprov och bakåtspridd elektron diffraktion (EBSD). Flera konventionella och in situ dragprov utfördes för att verifiera de teoretiska resultaten. Vi utförde EBSD-mätningar på dragprov som avbrutits vid olika töjningar och efter brott samt med in situ dragprov för att följa utvecklingen av mikrostrukturen noggrant. Vi tar hänsyn till de inre energibarriärernas roll i våra förutsägelser och presenterar ett nytt sätt att experimentellt få GSFE av austenitiska rostfria stål. Tidigare kunde endast SFE mätas tillförlitligt genom väl utformade experiment. I den aktuella avhandlingen går vi vidare och föreslår en teknik som kan ge noggranna värden för den instabila staplingsfelenergin för alla austenitiska legeringar som uppvisar tvillingbildning.
7

Thermodynamic modeling of the stacking fault energy in austenitic stainless steels

Olsson, Malin January 2014 (has links)
The stacking fault energy (SFE) of seven austenitic stainless steels with the compositions x(Cr)=20 at%, 8≤x(Ni)≤20 at% and 0≤x(Mn)≤8 at% have been calculated at room temperature using the thermodynamics-based Olson and Cohen modeling approach [1]. Modeling has been performed using the TCFE7 database together with the Thermo-Calc 3.0 software. Experimental SFE values from transmission electron microscopy (TEM) measurements and theoretical SFE values from ab initio calculations were used for comparison. The results of the SFE from TCFE7 were not in agreement with the values reported in the literature. After an evaluation of the thermodynamic parameters in the database, a new assessment of the SFE in the ternary and quaternary Fe-Cr-Ni and Fe-Cr-Ni-Mn system was proposed which resulted in SFE values in fairly good agreement with the literature.
8

An Evaluation of Constitutive Laws and their Ability to Predict Flow Stress over Large Variations in Temperature, Strain, and Strain Rate Characteristic of Friction Stir Welding

Kuykendall, Katherine Lynn 16 June 2011 (has links) (PDF)
Constitutive laws commonly used to model friction stir welding have been evaluated, both qualitatively and quantitatively, and a new application of a constitutive law which can be extended to materials commonly used in FSW is presented. Existing constitutive laws have been classified as path-dependent or path-independent. Path-independent laws have been further classified according to the physical phenomena they capture: strain hardening, strain rate hardening, and/or thermal softening. Path-dependent laws can track gradients in temperature and strain rate characteristic to friction stir welding; however, path-independent laws cannot. None of the path-independent constitutive laws evaluated has been validated over the full range of strain, strain rate, and temperature in friction stir welding. Holding all parameters other than constitutive law constant in a friction stir weld model resulted in temperature differences of up to 21%. Varying locations for maximum temperature difference indicate that the constitutive laws resulted in different temperature profiles. The Sheppard and Wright law is capable of capturing saturation but incapable of capturing strain hardening with errors as large as 57% near yield. The Johnson-Cook law is capable of capturing strain hardening; however, its inability to capture saturation causes over-predictions of stress at large strains with errors as large as 37% near saturation. The Kocks and Mecking model is capable of capturing strain hardening and saturation with errors less than 5% over the entire range of plastic strain. The Sheppard and Wright and Johnson-Cook laws are incapable of capturing transients characteristic of material behavior under interrupted temperature or strain rate. The use of a state variable in the Kocks and Mecking law allows it to predict such transients. Constants for the Kocks and Mecking model for AA 5083, AA 3004, and Inconel 600 were determined from Atlas of Formability data. Constants for AA 5083 and AA 3004 were determined with the traditional Kocks and Mecking model; however, constants for Inconel 600 could not be determined without modification to the model. The temperature and strain rate combinations for Inconel 600 fell into two hardening domains: low temperatures and high strain rates exhibited twinning while high temperatures and low strain rates exhibited slip. An additional master curve was added to the Kocks and Mecking model to account for two hardening mechanisms. The errors for the Kocks and Mecking model predictions are generally within 10% for all materials analyzed.
9

Generalised stacking fault energy and plastic deformation of austenitic stainless steels

Molnár, Dávid Sándor January 2018 (has links)
Austenitic stainless steels are primarily known for their exceptional corrosion resistance. They have the face centred cubic (FCC) structure which is stabilised by adding nickel to the Fe-Cr alloy. The Fe-Cr-Ni system can be further extended by adding other elements such as Mn, Mo, N, C, etc. in order to improve the properties. Since austenitic stainless steels are often used as structural materials, it is important to be able to predict their mechanical behaviour based on their composition, microstructure, magnetic state, etc. In this work, we investigate the plastic deformation behaviour of austenitic stainless steels by theoretical and experimental approaches. In FCC materials the stacking fault energy (SFE) plays an important role in the prediction of the deformation modes. Based on the magnitude of the SFE different deformation modes can be observed such as martensite formation, deformation twinning, dissociated or undissociated dislocation glide. All these features influence the behaviour differently, therefore it is desired to be able to predict their occurrence. Alloying and temperature have strong effect on the SFE and thus on the mechanical properties of the alloys. Several models based on the SFE and more recently on the so called generalised stacking fault energy (GSFE or γ-surface) are available to predict the alloy's affinity to twinning and the critical twinning stress representing the minimum resolved shear stress required to initiate the twinning deformation mechanism. One can employ well established experimental techniques to measure the SFE. On the other hand, one needs to resort to ab initio calculations based on density functional theory (DFT) to compute the GSFE of austenitic steels and derive parameters like the twinnability and the critical twinning stress.  We discuss the effect of the stacking fault energy on the deformation behaviour for two different austenitic stainless steels. We calculate the GSFE of the selected alloys and based on different models, we predict their tendency for twinning and the critical twinning stress. The theoretical predictions are contrasted with tensile tests and electron backscatter diffraction (EBSD) measurements. Several conventional and in situ tensile test are performed to verify the theoretical results. We carry out EBSD measurements on interrupted and fractured specimens and during tensile tests to closely follow the development of the microstructure. We take into account the role of the intrinsic energy barriers in our predictions and introduce a new and so far unique way to experimentally obtain the GSFE of austenitic stainless steels. Previously, only the SFE could be measured precisely by well-designed experiments. In the present thesis we go further and propose a technique that can provide accurate unstable stacking fault energy values for any austenitic alloy exhibiting twinning. / Austenitiska rostfria stål är främst kända för sin exceptionella korrosionsbeständighet. De har en ytcentrerad kubisk (FCC) struktur som stabiliseras genom att nickel tillsätts till Fe-Cr legeringen. Fe-Cr-Ni-systemet kan utökas ytterligare genom tillsats av andra element såsom Mn, Mo, N, C, etc. för att förbättra egenskaperna. Eftersom austenitiska rostfria stål ofta används som konstruktionsmaterial är det viktigt att kunna förutsäga deras mekaniska egenskaper baserat på deras sammansättning, mikrostruktur, magnetiska tillstånd, etc. I denna avhandling undersöker vi det plastiska deformationsbeteendet hos austenitiska rostfria stål både teoretiskt och experimentellt. I FCC material spelar staplingsfelsenergin (SFE) en viktig roll vid förutsägelsen av deformationsmekanism. Baserat på storleken av SFE kan olika deformationsmekanismer observeras, såsom martensitbildning, tvillingbildning, dissocierad eller odissocierad dislokationsglidning. Alla dessa funktioner påverkar beteendet på olika sätt, därför är det önskvärt att kunna förutsäga deras förekomst. Legering och temperatur har stark inverkan på SFE och därmed legeringarnas mekaniska egenskaper. Flera modeller, baserade på SFE och mer nyligen på den så kallade generaliserade staplingsfelenergin (GSFE eller γ-surface), är tillgängliga för att förutsäga legeringens benägenhet till tvillingbildning och den kritiska spänning som representerar den minsta upplösta skjuvspänningen som krävs för att initiera tvillingbildning. Man kan använda ab initio beräkningar baserade på täthetsfunktionalteori (DFT) för att beräkna GSFE för austenitiska stål och härleda parametrar som twinnability och kritisk tvillingsspänning. Vi diskuterar effekten av staplingsfelenergi på deformationsbeteendet för två olika austenitiska rostfria stål. Vi beräknar GSFE för de valda legeringarna och baserat på olika modeller, förutsäger vi deras tendens till tvillingbildning och den kritiska tvillingsspänningen. De teoretiska förutsägelserna jämförs med resultat från dragprov och bakåtspridd elektron diffraktion (EBSD). Flera konventionella och in situ dragprov utfördes för att verifiera de teoretiska resultaten. Vi utförde EBSD-mätningar på dragprov som avbrutits vid olika töjningar och efter brott samt med in situ dragprov för att följa utvecklingen av mikrostrukturen noggrant. Vi tar hänsyn till de inre energibarriärernas roll i våra förutsägelser och presenterar ett nytt sätt att experimentellt få GSFE av austenitiska rostfria stål. Tidigare kunde endast SFE mätas tillförlitligt genom väl utformade experiment. I den aktuella avhandlingen går vi vidare och föreslår en teknik som kan ge noggranna värden för den instabila staplingsfelenergin för alla austenitiska legeringar som uppvisar tvillingbildning.
10

ESTUDO DA DEFORMAÇÃO CRIOGÊNICA DE ALUMÍNIO, COBRE E PRATA

Maeda, Milene Yumi 24 February 2017 (has links)
Made available in DSpace on 2017-07-21T20:43:51Z (GMT). No. of bitstreams: 1 Milene Yumi Maeda.pdf: 4409513 bytes, checksum: c08056fcd59620f956225201d8330824 (MD5) Previous issue date: 2017-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Commercially pure aluminum, copper and silver samples were rolled at room and cryogenic temperatures until approximately 99% of thickness total reduction, causing deformation (ε) between 3.93 and 4.61 Although not in balance state, the metals tend to have more defects density when cryo rolled, especially higher dislocation density, evidenced by calculations based on X-ray data for copper and silver. Higher defects density implies superior hardness, tensile strength limit and yield strength, but smaller elongation. There was evidence of stacking fault energy (SFE) influence in the process, evaluating hardness and properties obtained through tensile tests of the materials. The cryogenic temperature (CT) and room temperature (RT) rolled samples were evaluated by hardness tests, tensile tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD), which indicate influence of stacking fault energy (SFE) on process. The hardness of all the materials tend to drop when they are kept at RT after cryo rolling and bigger larger hardness decrease was observed for silver, which one has the lowest SFE and slightest hardness decreased was noticed for aluminum, which has high SFE. There is evidence that cryo rolling is more attractive for low SFE materials after ageing at RT, as long as silver presented simultaneous increase in higher tensile strength of about 53% and 29% gain of elongation when compared to the same one rolled at RT. Elongation gain of silver can be associated to static recrystallization, as evidenced contrasting silver’s tensile charts after ageing and recrystallized silver. In turn, copper presented 15% of strength limit increase and just 5% elongation, whereas aluminum had both strength limit and elongation reduced. / Amostras de alumínio, cobre e prata comercialmente puros foram laminadas à temperatura ambiente (TA) e criogênica (TC) até aproximadamente 99% de redução total de espessura, causando deformações (ε) entre 3,93 e 4,61. Embora não seja em estado de equilíbrio, os metais tendem a possuir maior densidade de defeitos quando laminados criogenicamente, sobretudo maior densidade de discordâncias, evidenciado pelos cálculos baseados nos dados obtidos através difração de raios-X para cobre e prata. Uma quantidade maior de defeitos implica em maiores dureza e limites de escoamento e resistência, mas menor alongamento. Houve indícios da influência da energia de falha de empilhamento (EFE) no processo, avaliando-se a dureza e as propriedades obtidas através dos ensaios de tração dos materiais. A dureza de todos tende a cair quando mantidos em TA após a laminação criogênica e observou-se uma maior queda de dureza para a prata, que tem baixa EFE e uma menor queda de dureza para o alumínio, que tem elevada EFE. Há indicativos de que a laminação criogênica é mais vantajosa para metais de baixa EFE após envelhecimento em TA, visto que a prata apresentou um aumento simultâneo de limite de resistência de aproximadamente 53% e um ganho de 29% de alongamento quando comparado à mesma laminada em TA. O aumento de alongamento da prata pode ser associado à recristalização estática da mesma, como pode ser evidenciado comparando-se os gráficos de tração da prata após envelhecimento com a prata recristalizada. O cobre, por sua vez, apresentou um aumento de 15% do limite de resistência e apenas 5% de alongamento, enquanto o alumínio apresentou redução tanto do limite de resistência quanto de alongamento.

Page generated in 0.1128 seconds