• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of ZnO Thin Films Deposited on Stainless Steel Substrates for Piezoelectric Transducers Application

Huang, Yu-Chang 13 August 2010 (has links)
This study presents a high-performance ZnO piezoelectric transducer integrated with the flexible stainless steel substrate. The ZnO piezoelectric film of 1.08nm was deposited on the flexible stainless steel substrate using a RF magnetron sputtering system. The cantilever length of 1cm and the vibration area of 1cm2 were designed for low-frequency environment according to the Cantilever Vibration Theory. The effects of various sputtering parameters such as substrate temperature, RF power and sputtering pressure were investigated to improve the piezoelectric characteristics of ZnO thin films. It was also discussed the unit thickness of open voltage values, and then the optimal sputtering parameters were determined. The physical characteristics of ZnO thin films were obtained by the analyses of the scanning electron microscopy (SEM) and X-ray diffraction (XRD) to discuss the surfaces, cross section and crystallization of ZnO thin films. The voltage analysis were measured the open and load voltage by the measurement system. The optimal deposition parameters for ZnO thin films are substrate temperature of 300¢J, RF power of 75W, sputtering pressure of 9 mTorr and oxygen concentration of 60%, which were determined by physical characteristics and voltage analysis. The study employs a precise mass loading of 0.57g on the cantilever to increase the vibration amplitude. The vibration source from 1~150Hz was provided to the piezoelectric transducer, and then the experimental results were showed resonance frequency of 75Hz by oscilloscope. When the optimal thickness of ZnO films is 1.08£gm and vibration amplitude is 1.19mm, the open circuit voltage of the power generator is 5.25V.After rectifying and flitting with a capacitor of 33nF,the maximum power of 1.0£gW/cm2 was achieved with the load resistance of 5M£[.
2

Piezoelectric transducers based on double-sided AlN thin filmson stainless steel substrates

Zhong, I-Zhan 09 August 2012 (has links)
This investigation examines a novel means of integrating high-performance AlN piezoelectric thin films with a flexible stainless steel substrate (SUS 304) to fabricate a double-sided piezoelectric transducer. Various sputtering parameters, such as sputtering pressure, substrate temperature, nitrogen concentration, and RF power, were investigated to improve the piezoelectric characteristics of AlN thin films. Scanning electron microscopy and X-ray diffraction of AlN piezoelectric film reveal a rigid surface structure and highly c-axis-preferring orientation. The maximum output power per unit thickness was discussed, and the optimal sputtering parameters were determined. The double-sided piezoelectric transducer is constructed by depositing AlN piezoelectric thin films on both the front and the back sides of SUS 304 substrate. The titanium (Ti) and platinum(Pt) layers were deposited using a dual-gun DC sputtering system between the AlN piezoelectric thin film and the SUS 304 substrate. The optimal deposition parameters for AlN thin films are sputtering pressure of 5 mTorr, substrate temperature of 300 ¢J, nitrogen concentration of 40 %, and RF power of 250 W. The maximum open circuit voltage of the transducer under the vibrational frequency of 80 Hz, vibration amplitude of 4mm, and mass loading of 0.5g, is approximately 20 V, or 5.3 V/£gm. After full-wave rectification and filtering through a 33 nF capacitor, a specific output power of 1.462 £gW/cm2 is obtained from the transducer with a load resistance of 7 M£[.

Page generated in 0.1104 seconds