• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

What traits predispose the Band-rumped Storm-petrel, Oceanodroma castro, to ecological speciation in the absence of physical barriers to gene flow?

Deane, Petra 01 February 2013 (has links)
Evidence for the repeated, independent evolution of hot- and cool-season breeding populations across colonies of the Band-rumped Storm-petrel has garnered much interest from seabird ecologists and evolutionary biologists, alike. Sympatric seasonal populations have been shown to be each other’s closest relatives, implying that ecological divergence into two seasonal foraging types has taken place several times independently across the species’ range, each time in the absence of geographical barriers to gene flow. I present data on the molecular genetic characteristics of a unique year-round breeding population in the Cape Verde archipelago. Using mitochondrial control region sequence and five microsatellite loci, I characterized genetic relationships among 220 birds breeding in four different months (January, April, June and November) and tested for a relationship between temporal isolation and genetic differentiation. Birds breeding in April, June and November were genetically indistinguishable at microsatellite loci, but control region sequence suggested differentiation between January and other months (pairwise ΦST from 0.19 to 0.46, p≤0.05). No evidence for genetic isolation by time was found. A comparison of birds breeding in June and November revealed significant differences in a suite of morphological traits related to foraging strategy (tarsus length, bill length, bill depth, head length, wing length and tail shape), and even significant variation among birds breeding in the same month, despite evidence for gene flow between these groups. Interpreting these patterns in the context of Band-rumped Storm-petrel populations range-wide, I suggest that divergent selection on standing variation within ancestral populations may be an important mechanism explaining the repeated, independent evolution of conserved seasonal foraging types in this species. / Thesis (Master, Biology) -- Queen's University, 2011-02-28 12:02:44.256
2

Genetics Analysis of Standing Variation for Floral Morphology and Fitness Components in a Natural Population of Mimulus Guttatus (Common Monkeyflower)

Lee, Young Wha January 2009 (has links)
<p>An unresolved problem in evolutionary biology is the nature of forces that maintain standing variation for quantitative traits. In this study we take advantage of newly developed genomic resources to understand how variation is maintained for flower size and fitness components in a natural population of annual Mimulus guttatus in the Oregon Cascades. Extensive inbreeding depression has been documented in this population for fertility and viability (Willis 1999 a,b), while previous biometric experiments have demonstrated that some of the floral variation in this site is due to common alleles perhaps maintained by balancing selection (Kelly and Willis 2001, Kelly 2003). Detailed comparison of the genetic architecture of these two categories of traits can clarify the relative contributions of mutation versus selection in maintaining trait variation within populations as well as the relevance of standing variation for trait diversification. </p><p>We present here the results from a large scale effort to dissect variation for flower size and a suite of genetically correlated traits. In 3 independent F2 mapping populations we mapped QTLs for floral morphology (flower width and length, pistil length, and stamen length), flowering time, and leaf size. We also mapped segregation distortion loci and QTLs for fertility components (pollen viability and seed set) that exhibit inbreeding depression. We compare the genetic architecture of these two sets of traits and find clear differences. Morphological traits and flowering time are polygenic and QTLs are generally additive. In contrast, deleterious QTLs associated with segregation distortion or fertility are partially recessive and include major QTLs. There is also little co-localization between morphological/flowering time and fertility QTLs. The analysis suggests that the genetic basis of segregating variation in morphology is fundamentally different from traits exhibiting inbreeding depression. Further, there is considerable variation in the extant of pleiotropy exhibited by QTLs for morphological traits as well as flowering time and we report that epistasis contributes to the standing variation for these traits. The analysis suggests that the standing variation is relevant for trait diversification and that the variation in floral allometry, plant form, and life history observed in the guttatus species complex could have readily evolved from the standing variation.</p> / Dissertation

Page generated in 0.2425 seconds