• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ancient eruptions of η Carinae: a tale written in proper motions

Kiminki, Megan M., Reiter, Megan, Smith, Nathan 21 November 2016 (has links)
We analyse eight epochs of Hubble Space Telescope H alpha+[N ii] imaging of eta Carinae's outer ejecta. Proper motions of nearly 800 knots reveal that the detected ejecta are divided into three apparent age groups, dating to around 1250 A.D., to around 1550 A.D., and to during or shortly before the Great Eruption of the 1840s. Ejecta from these groups reside in different locations and provide a firm constraint that eta Car experienced multiple major eruptions prior to the nineteenth century. The 1250 and 1550 events did not share the same axisymmetry as the Homunculus; the 1250 event was particularly asymmetric, even one-sided. In addition, the ejecta in the S ridge, which have been associated with the Great Eruption, appear to predate the ejection of the Homunculus by several decades. We detect essentially ballistic expansion across multiple epochs. We find no evidence for large-scale deceleration of the observed knots that could power the soft X-ray shell by ploughing into surrounding material, suggesting that the observed X-rays arise instead from fast, rarefied ejecta from the 1840s overtaking the older dense knots. Early deceleration and subsequent coasting cannot explain the origin of the older outer ejecta - significant episodic mass loss prior to the nineteenth century is required. The time-scale and geometry of the past eruptions provide important constraints for any theoretical physical mechanisms driving eta Car's behaviour. Non-repeating mechanisms such as the merger of a close binary in a triple system would require additional complexities to explain the observations.
2

Resolving the H alpha-emitting Region in the Wind of eta Carinae

Wu, Ya-Lin, Smith, Nathan, Close, Laird M., Males, Jared R., Morzinski, Katie M. 17 May 2017 (has links)
The massive evolved star. Carinae is the most luminous star in the Milky Way and has the highest steady wind mass-loss rate of any known star. Radiative transfer models of the spectrum by Hillier et al. predict that Ha is mostly emitted in regions of the wind at radii of 6-60 au from the star (2.5-25 mas at 2.35 kpc). We present diffraction-limited images (FWHM similar to 25 mas) with Magellan adaptive optics in two epochs, showing that. Carinae consistently appears similar to 2.5-3 mas wider in Ha emission compared to the adjacent 643 nm continuum. This implies that the H alpha line-forming region may have a characteristic emitting radius of 12 mas or similar to 30 au, in very good agreement with the Hillier stellar-wind model. This provides direct confirmation that the physical wind parameters of that model are roughly correct, including the mass-loss rate of M= 10(-3)M(circle dot) yr(-1), plus the clumping factor, and the terminal velocity. Comparison of the Ha images (ellipticity and PA) to the continuum images reveals no significant asymmetries at H alpha. Hence, any asymmetry induced by a companion or by the primary's rotation do not strongly influence the global H alpha emission in the outer wind.

Page generated in 0.0486 seconds