• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets

Christiansen, Jessie L., Vanderburg, Andrew, Burt, Jennifer, Fulton, B. J., Batygin, Konstantin, Benneke, Björn, Brewer, John M., Charbonneau, David, Ciardi, David R., Cameron, Andrew Collier, Coughlin, Jeffrey L., Crossfield, Ian J. M., Dressing, Courtney, Greene, Thomas P., Howard, Andrew W., Latham, David W., Molinari, Emilio, Mortier, Annelies, Mullally, Fergal, Pepe, Francesco, Rice, Ken, Sinukoff, Evan, Sozzetti, Alessandro, Thompson, Susan E., Udry, Stéphane, Vogt, Steven S., Barman, Travis S., Batalha, Natasha E., Bouchy, François, Buchhave, Lars A., Butler, R. Paul, Cosentino, Rosario, Dupuy, Trent J., Ehrenreich, David, Fiorenzano, Aldo, Hansen, Brad M. S., Henning, Thomas, Hirsch, Lea, Holden, Bradford P., Isaacson, Howard T., Johnson, John A., Knutson, Heather A., Kosiarek, Molly, López-Morales, Mercedes, Lovis, Christophe, Malavolta, Luca, Mayor, Michel, Micela, Giuseppina, Motalebi, Fatemeh, Petigura, Erik, Phillips, David F., Piotto, Giampaolo, Rogers, Leslie A., Sasselov, Dimitar, Schlieder, Joshua E., Ségransan, Damien, Watson, Christopher A., Weiss, Lauren M. 31 August 2017 (has links)
HD 3167 is a bright (V = 8.9), nearby KO star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial-velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02 +/- 0.38 M-circle plus for HD 3167 b, a hot super-Earth with a likely rocky composition (rho(b) = 5.6(-1.43)(+2.15) g cm(-3)), and 9.80(-1.24)(+1.30) M-circle plus for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (rho(c) = 1.97(-0.59)(+0.94) g cm(-3)). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509 +/- 0.045 d (between planets b and c) and a minimum mass of 6.90 +/- 0.71 M-circle plus. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.degrees 3 because we do not observe transits of planet d. From 1.degrees 3 to 40 degrees, there are viewing geometries invoking special nodal configurations, which result in planet d not transiting some fraction of the time.

Page generated in 0.0294 seconds