• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • Tagged with
  • 17
  • 17
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neutron star electromagnetic field structure /

Thurman, Hugh O. Copeland, Gary E. January 2004 (has links)
Thesis (Ph.D.)--Old Dominion University, 2004.
2

SYSTEMATIC UNCERTAINTIES IN THE SPECTROSCOPIC MEASUREMENTS OF NEUTRON STAR MASSES AND RADII FROM THERMONUCLEAR X-RAY BURSTS. III. ABSOLUTE FLUX CALIBRATION

Güver, Tolga, Özel, Feryal, Marshall, Herman, Psaltis, Dimitrios, Guainazzi, Matteo, Díaz-Trigo, Maria 21 September 2016 (has links)
Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 +/- 0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.
3

FROM NEUTRON STAR OBSERVABLES TO THE EQUATION OF STATE. I. AN OPTIMAL PARAMETRIZATION

Raithel, Carolyn A., Özel, Feryal, Psaltis, Dimitrios 26 October 2016 (has links)
The increasing number and precision of measurements of neutron star masses, radii, and, in the near future, moments of inertia offer the possibility of precisely determining the neutron star equation of state (EOS). One way to facilitate the mapping of observables to the EOS is through a parametrization of the latter. We present here a generic method for optimizing the parametrization of any physically allowed EOS. We use mock EOS that incorporate physically diverse and extreme behavior to test how well our parametrization reproduces the global properties of the stars, by minimizing the errors in the observables of mass, radius, and the moment of inertia. We find that using piecewise polytropes and sampling the EOS with five fiducial densities between similar to 1-8 times the nuclear saturation density results in optimal errors for the smallest number of parameters. Specifically, it recreates the radii of the assumed EOS to within less than 0.5 km for the extreme mock EOS and to within less than 0.12 km for 95% of a sample of 42 proposed, physically motivated EOS. Such a parametrization is also able to reproduce the maximum mass to within 0.04 M-circle dot and the moment of inertia of a 1.338 M-circle dot. neutron star to within less than 10% for 95% of the proposed sample of EOS.
4

MEASURING NEUTRON STAR RADII VIA PULSE PROFILE MODELING WITH NICER

Özel, Feryal, Psaltis, Dimitrios, Arzoumanian, Zaven, Morsink, Sharon, Bauböck, Michi 18 November 2016 (has links)
The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.
5

RADIO CONSTRAINTS ON LONG-LIVED MAGNETAR REMNANTS IN SHORT GAMMA-RAY BURSTS

Fong, W., Metzger, B. D., Berger, E., Özel, F. 03 November 2016 (has links)
The merger of a neutron star (NS) binary may result in the formation of a rapidly spinning magnetar. The magnetar can potentially survive for seconds or longer as a supramassive NS before collapsing to a black hole if, indeed, it collapses at all. During this process, a fraction of the magnetar's rotational energy of similar to 10(53) erg is transferred via magnetic spin-down to the surrounding ejecta. The resulting interaction between the ejecta and the surrounding circumburst medium powers a year-long or greater synchrotron radio transient. We present a search for radio emission with the Very Large Array following nine short-duration gamma-ray bursts (GRBs) at rest-frame times of approximate to 1.3-7.6 yr after the bursts, focusing on those events that exhibit early-time excess X-ray emission that may signify the presence of magnetars. We place upper limits of less than or similar to 18-32 mu Jy on the 6.0 GHz radio emission, corresponding to spectral luminosities of less than or similar to(0.05-8.3) x 10(39) erg s(-1). Comparing these limits to the predicted radio emission from a long-lived remnant and incorporating measurements of the circumburst densities from broadband modeling of short GRB afterglows, we rule out a stable magnetar with an energy of 10(53) erg for half of the events in our sample. A supramassive remnant that injects a lower rotational energy of 10(52) erg is ruled out for a single event, GRB 050724A. This study represents the deepest and most extensive search for long-term radio emission following short GRBs to date, and thus the most stringent limits placed on the physical properties of magnetars associated with short GRBs from radio observations.
6

MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

Medin, Zach, Steinkirch, Marina von, Calder, Alan C., Fontes, Christopher J., Fryer, Chris L., Hungerford, Aimee L. 21 November 2016 (has links)
The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.
7

A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914

Soares-Santos, M., Kessler, R., Berger, E., Annis, J., Brout, D., Buckley-Geer, E., Chen, H., Cowperthwaite, P. S., Diehl, H. T., Doctor, Z., Drlica-Wagner, A., Farr, B., Finley, D. A., Flaugher, B., Foley, R. J., Frieman, J., Gruendl, R. A., Herner, K., Holz, D., Lin, H., Marriner, J., Neilsen, E., Rest, A., Sako, M., Scolnic, D., Sobreira, F., Walker, A. R., Wester, W., Yanny, B., Abbott, T. M. C., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brown, D. A., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cenko, S. B., Chornock, R., Crocce, M., D’Andrea, C. B., da Costa, L. N., Desai, S., Dietrich, J. P., Drout, M. R., Eifler, T. F., Estrada, J., Evrard, A. E., Fairhurst, S., Fernandez, E., Fischer, J., Fong, W., Fosalba, P., Fox, D. B., Fryer, C. L., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gutierrez, G., Honscheid, K., James, D. J., Karliner, I., Kasen, D., Kent, S., Kuropatkin, N., Kuehn, K., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., Margutti, R., Martini, P., Matheson, T., McMahon, R. G., Metzger, B. D., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Peoples, J., Plazas, A. A., Quataert, E., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, M., Smith, N., Smith, R. C., Stebbins, A., Sutton, P. J., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, R. C., Tucker, D. L., Vikram, V., Wechsler, R. H., Weller, J. 27 May 2016 (has links)
We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg(2) area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4-5, 7, and 24 days after the trigger. The median 5 sigma point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg(2), corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i - z) = 1, 0, - 1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.
8

A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226

Cowperthwaite, P. S., Berger, E., Soares-Santos, M., Annis, J., Brout, D., Brown, D. A., Buckley-Geer, E., Cenko, S. B., Chen, H. Y., Chornock, R., Diehl, H. T., Doctor, Z., Drlica-Wagner, A., Drout, M. R., Farr, B., Finley, D. A., Foley, R. J., Fong, W., Fox, D. B., Frieman, J., Garcia-Bellido, J., Gill, M. S. S., Gruendl, R. A., Herner, K., Holz, D. E., Kasen, D., Kessler, R., Lin, H., Margutti, R., Marriner, J., Matheson, T., Metzger, B. D., Neilsen Jr., E. H., Quataert, E., Rest, A., Sako, M., Scolnic, D., Smith, N., Sobreira, F., Strampelli, G. M., Villar, V. A., Walker, A. R., Wester, W., Williams, P. K. G., Yanny, B., Abbott, T. M. C., Abdalla, F. B., Allam, S., Armstrong, R., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Desai, S., Dietrich, J. P., Evrard, A. E., Neto, A. Fausti, Fosalba, P., Gerdes, D. W., Giannantonio, T., Goldstein, D. A., Gruen, D., Gutierrez, G., Honscheid, K., James, D. J., Johnson, M. W. G., Johnson, M. D., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, R. C., Suchyta, E., Tarle, G., Thomas, D., Thomas, R. C., Tucker, D. L., Weller, J. 29 July 2016 (has links)
We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2-24 days after the GW detection. We achieve 5 sigma point-source limiting magnitudes of i approximate to 21.7 and z approximate to 21.5, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with greater than or similar to 3 sigma significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of i - z approximate to 0.3 mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.
9

Superfluid spherical Couette flow and rotational irregularities in pulsars

Peralta, Carlos Andres Unknown Date (has links) (PDF)
Small amplitude rotational irregularities are observed in a number of rotation-powered pulsars. They fall into two classes: (i) glitches, defined as abrupt increases in the angular velocity of a pulsar (accompanied sometimes by changes in the angular acceleration Ω), of which 286 have been observed in 101 objects; and (ii) timing noise, a continuous stochastic fluctuation in phase, or, which is observed mostly in young and adolescent pulsars (with ages ≥ 10 4 yr). Both classes of irregularity seem to arise from some mechanism that couples the angular momentum of the solid crust and superfluid core of the star, which is activated suddenly when differential rotation exceeds a threshold. Coupling mechanisms proposed to date include catastrophic vortex unpinning in the inner crust, triggered by starquakes; vortex creep, due to thermally activated quantum tunnelling; superfluid-superconductor interactions in the core; and superfluid instabilities. The associated theories are phenomenological, not predictive.
10

The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South

Chornock, R., Berger, E., Kasen, D., Cowperthwaite, P. S., Nicholl, M., Villar, V. A., Alexander, K. D., Blanchard, P. K., Eftekhari, T., Fong, W., Margutti, R., Williams, P. K. G., Annis, J., Brout, D., Brown, D. A., Chen, H.-Y., Drout, M. R., Farr, B., Foley, R. J., Frieman, J. A., Fryer, C. L., Herner, K., Holz, D. E., Kessler, R., Matheson, T., Metzger, B. D., Quataert, E., Rest, A., Sako, M., Scolnic, D. M., Smith, N., Soares-Santos, M. 16 October 2017 (has links)
We present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo. Our data set comprises seven epochs of J + H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all of the subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, including spectral peaks near 1.07 and 1.55 mu m. Our fiducial model with 0.04 M-circle dot of ejecta, an ejection velocity of v = 0.1c, and a lanthanide concentration of X-lan = 10(-2) provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 days after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r-process elements.

Page generated in 0.0338 seconds