• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a Static Concentrating Photovoltaic Roof Tile

Dickinson, Michael, Design Studies, College of Fine Arts, UNSW January 2001 (has links)
The aim of this document is to investigate through industrial design the potential of a high efficiency photovoltaic concentrator theory. The investigation directs a proposed layout for the design of a device, which specifically addresses the incorporation of the concentrator theory into the design of a photovoltaic ????????roof tile????????. The focus of the investigation has been the integration of theoretical constructs and physical realities. The objective is to facilitate this transition from theory to reality: to contribute to the quest of creating viable manufacturable designs for the generation of clean low cost electrical power. The use of a roof tile as the focus of the incorporating device served two purposes. Number one: it provided a sensible, existing platform, which is under utilised, presented potential and fitted within established building practices. It was not the objective of this thesis to argue that tile integration is the best, only or even the most financially viable direction to pursue; it was one option among many. This brings us to the second purpose; the consideration of existing roofing tiles forced the theory to be applied within set limitations, in particular existing size restrictions. The imposition of a framework to work within highlighted the design issues, which would have to be addressed in the actualisation of the theory. The theory????????s broad strategy for economic viability has been to reduce the actual silicone cell content of panel designs by approximately one third. This is achieved by the use of numerically fewer cells in combination with a concentration method, which does not cost more than the savings gained by the use of fewer cells. This document records the design process undertaken and presents the findings so that further development can be undertaken.
2

Design of a Static Concentrating Photovoltaic Roof Tile

Dickinson, Michael, Design Studies, College of Fine Arts, UNSW January 2001 (has links)
The aim of this document is to investigate through industrial design the potential of a high efficiency photovoltaic concentrator theory. The investigation directs a proposed layout for the design of a device, which specifically addresses the incorporation of the concentrator theory into the design of a photovoltaic ????????roof tile????????. The focus of the investigation has been the integration of theoretical constructs and physical realities. The objective is to facilitate this transition from theory to reality: to contribute to the quest of creating viable manufacturable designs for the generation of clean low cost electrical power. The use of a roof tile as the focus of the incorporating device served two purposes. Number one: it provided a sensible, existing platform, which is under utilised, presented potential and fitted within established building practices. It was not the objective of this thesis to argue that tile integration is the best, only or even the most financially viable direction to pursue; it was one option among many. This brings us to the second purpose; the consideration of existing roofing tiles forced the theory to be applied within set limitations, in particular existing size restrictions. The imposition of a framework to work within highlighted the design issues, which would have to be addressed in the actualisation of the theory. The theory????????s broad strategy for economic viability has been to reduce the actual silicone cell content of panel designs by approximately one third. This is achieved by the use of numerically fewer cells in combination with a concentration method, which does not cost more than the savings gained by the use of fewer cells. This document records the design process undertaken and presents the findings so that further development can be undertaken.

Page generated in 0.1237 seconds