1 |
Duality relations in finite queueing modelsBarjesteh, Nasser January 2013 (has links)
Motivated by applications in multimedia streaming and in energy systems, we study duality relations in fi nite queues. Dual of a queue is de fined to be a queue in which the arrival and service processes are interchanged. In other words, dual of the G1/G2/1/K queue is the G2/G1/1/K queue, a queue in which the inter-arrival times have the same distribution as the service times
of the primal queue and vice versa. Similarly, dual of a fluid flow queue
with cumulative input C(t) and available processing S(t) is a fluid queue
with cumulative input S(t) and available processing C(t). We are primarily interested in finding relations between the overflow and underflow of the primal and dual queues. Then, using existing results in the literature regarding the probability of loss and the stationary probability of queue being
full, we can obtain estimates on the probability of starvation and the probability of the queue being empty. The probability of starvation corresponds to the probability that a queue becomes empty, i.e., the end of a busy period.
We study the relations between arrival and departure Palm distributions and their relations to stationary distributions. We consider both the case of point process inputs as well as fluid inputs. We obtain inequalities between the probability of the queue being empty and the probability of the queue being full for both the time stationary and Palm distributions by interchanging arrival and service processes. In the
fluid queue case, we show that there is an equality between arrival and departure distributions that leads to an equality between the probability of starvation in the primal queue and the probability of overflow in the dual queue. The techniques are based on monotonicity arguments and coupling. The usefulness of the bounds is illustrated via numerical results.
|
2 |
A unifying approach to non-minimal quasi-stationary distributions for one-dimensional diffusions / 一次元拡散過程に対する非極小な準定常分布への統一的アプローチYamato, Kosuke 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23682号 / 理博第4772号 / 新制||理||1684(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 矢野 孝次, 教授 泉 正己, 教授 日野 正訓 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
3 |
Quasi stationary distributions when infinity is an entrance boundary : optimal conditions for phase transition in one dimensional Ising model by Peierls argument and its consequences / Distributions quasi-stationnaires quand l'infini est une frontière d'entrée : conditions optimales pour une transition de phase dans le modèle d'Ising en une dimension par un argument de Peierls et diverses conséquencesLittin Curinao, Jorge Andrés 16 December 2013 (has links)
Cette thèse comporte deux chapitres principaux. Deux problèmes indépendants de Modélisation Mathématique y sont étudiés. Au chapitre 1, on étudiera le problème de l’existence et de l’unicité des distributions quasi-stationnaires (DQS) pour un mouvement Brownien avec dérive, tué en zéro dans le cas où la frontière d’entrée est l’infini et la frontière de sortie est zéro selon la classification de Feller.Ce travail est lié à l’article pionnier dans ce sujet par Cattiaux, Collet, Lambert, Martínez, Méléard, San Martín; où certaines conditions suffisantes ont été établies pour prouver l’existence et l’unicité de DQS dans le contexte d’une famille de Modèles de Dynamique des Populations.Dans ce chapitre, nous généralisons les théorèmes les plus importants de ce travail pionnier, la partie technique est basée dans la théorie de Sturm-Liouville sur la demi-droite positive. Au chapitre 2, on étudiera le problème d’obtenir des bornes inférieures optimales sur l’Hamiltonien du Modèle d’Ising avec interactions à longue portée, l’interaction entre deux spins situés à distance d décroissant comme d^(2-a), où a ϵ[0,1).Ce travail est lié à l’article publié en 2005 par Cassandro, Ferrari, Merola, Presutti où les bornes inférieures optimales sont obtenues dans le cas où a est dans [0,(log3/log2)-1) en termes de structures hiérarchiques appelées triangles et contours.Les principaux théorèmes obtenus dans cette thèse peuvent être résumés de la façon suivante:1. Il n’existe pas de borne inférieure optimale pour l’Hamiltonien en termes de triangles pour a dans ϵ[log2/log3,1). 2. Il existe une borne optimale pour l’Hamiltonien en termes de contours pour a dans a ϵ [0,1). / This thesis contains two main Chapters, where we study two independent problems of Mathematical Modelling : In Chapter 1, we study the existence and uniqueness of Quasi Stationary Distributions (QSD) for a drifted Browian Motion killed at zero, when $+infty$ is an entrance Boundary and zero is an exit Boundary according to Feller's classification. The work is related to the previous paper published in 2009 by { Cattiaux, P., Collet, P., Lambert, A., Martínez, S., Méléard, S., San Martín, where some sufficient conditions were provided to prove the existence and uniqueness of QSD in the context of a family of Population Dynamic Models. This work generalizes the most important theorems of this work, since no extra conditions are imposed to get the existence, uniqueness of QSD and the existence of a Yaglom limit. The technical part is based on the Sturm Liouville theory on the half line. In Chapter 2, we study the problem of getting quasi additive bounds on the Hamiltonian for the Long Range Ising Model when the interaction term decays according to d^{2-a}, a ϵ[0,1). This work is based on the previous paper written by Cassandro, Ferrari, Merola, Presutti, where quasi-additive bounds for the Hamiltonian were obtained for a in [0,(log3/log2)-1) in terms of hierarchical structures called triangles and Contours. The main theorems of this work can be summarized as follows: 1 There does not exist a quasi additive bound for the Hamiltonian in terms of triangles when a ϵ [0,(log3/log2)-1), 2. There exists a quasi additive bound for the Hamiltonian in terms of Contours for a in [0,1).
|
Page generated in 0.1226 seconds