• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stationary Waves in the Stratosphere-troposphere Circulation

Wang, Lei 23 February 2011 (has links)
Stationary wave theory elucidates the dynamics of the time mean zonally asymmetric component of the atmospheric circulation and separates it from the dynamics of the zonal mean climatological flow. This thesis focuses on the dynamics of stationary wave nonlinearity and its applications in stationary wave modelling and the stationary wave response to climate change. Stationary wave nonlinearity describes the self-interaction of stationary waves and is important in maintaining the observed zonally asymmetric atmospheric general circulation. Stationary wave nonlinearity is examined in quasi-geostrophic barotropic dynamics in both the presence and absence of transient waves. Stationary wave nonlinearity is shown to account for most of the difference between the linear and full nonlinear stationary waves, particularly if the zonal-mean flow adjustment to the stationary waves is taken into account. Wave activity analysis shows that stationary wave nonlinearity in this setting is associated with Rossby wave critical layer reflection. A time-integration type nonlinear stationary wave modelling technique is tested in this simple barotropic setting and is shown to be able to predict stationary wave nonlinearity and capture the basic features of the full nonlinear stationary wave. A baroclinic nonlinear stationary wave model is then developed using this technique and is applied to the problem of the stationary wave response to climate change. Previous stationary wave modelling has largely focused on the tropospheric circulation, but the stationary wave field extends into the stratosphere and plays an important dynamical role there. This stationary wave model is able to represent the stratospheric stationary wave field and is used to analyze the Northern Hemisphere stationary wave response to climate change simulated by the Canadian Middle Atmosphere Model (CMAM). In the CMAM simulation changes to the zonal mean basic state alone can explain much of the stationary wave response, which is largely controlled by changes of the zonal mean circulation in the Northern Hemisphere subtropical upper troposphere. However, details of the stratospheric wave driving response are also sensitive to other aspects of the zonal-mean response and to the heating response. Many climate change related effects appear to contribute robustly to an increased wave activity flux into the stratosphere.
2

Stationary Waves in the Stratosphere-troposphere Circulation

Wang, Lei 23 February 2011 (has links)
Stationary wave theory elucidates the dynamics of the time mean zonally asymmetric component of the atmospheric circulation and separates it from the dynamics of the zonal mean climatological flow. This thesis focuses on the dynamics of stationary wave nonlinearity and its applications in stationary wave modelling and the stationary wave response to climate change. Stationary wave nonlinearity describes the self-interaction of stationary waves and is important in maintaining the observed zonally asymmetric atmospheric general circulation. Stationary wave nonlinearity is examined in quasi-geostrophic barotropic dynamics in both the presence and absence of transient waves. Stationary wave nonlinearity is shown to account for most of the difference between the linear and full nonlinear stationary waves, particularly if the zonal-mean flow adjustment to the stationary waves is taken into account. Wave activity analysis shows that stationary wave nonlinearity in this setting is associated with Rossby wave critical layer reflection. A time-integration type nonlinear stationary wave modelling technique is tested in this simple barotropic setting and is shown to be able to predict stationary wave nonlinearity and capture the basic features of the full nonlinear stationary wave. A baroclinic nonlinear stationary wave model is then developed using this technique and is applied to the problem of the stationary wave response to climate change. Previous stationary wave modelling has largely focused on the tropospheric circulation, but the stationary wave field extends into the stratosphere and plays an important dynamical role there. This stationary wave model is able to represent the stratospheric stationary wave field and is used to analyze the Northern Hemisphere stationary wave response to climate change simulated by the Canadian Middle Atmosphere Model (CMAM). In the CMAM simulation changes to the zonal mean basic state alone can explain much of the stationary wave response, which is largely controlled by changes of the zonal mean circulation in the Northern Hemisphere subtropical upper troposphere. However, details of the stratospheric wave driving response are also sensitive to other aspects of the zonal-mean response and to the heating response. Many climate change related effects appear to contribute robustly to an increased wave activity flux into the stratosphere.
3

On the interaction between ice sheets and the large-scale atmospheric circulation over the last glacial cycle

Löfverström, Marcus January 2014 (has links)
The last glacial cycle (c. 115-12 kyr BP) was the most recent in a series of recurring glaciations of the subpolar continents. Massive ice sheets evolved in Eurasia and North America, which, at their maximum, were of continental scale and together lowered the global sea-level by approximately 100 m. The paleo-modelling community has focused on the last glacial maximum (LGM, ~ 20 kyr BP), leaving the longer period when the ice sheets evolved to their LGM configurations largely unexplored. In this thesis we study the mutual interaction between the time-mean atmospheric circulation and the evolution of the Northern Hemisphere ice sheets over the build-up phase of the last glacial cycle. Experiments are conducted with coupled atmosphere-ice-sheet models and a circulation model forced by geologically consistent reconstructions of the ice-sheet topography at key stages of the glacial cycle. The main findings from these studies are that the ice evolution in North America may have been controlled by circulation anomalies induced by the background topography in conjunction with the ice sheets themselves. A geologically consistent pre-LGM ice sheet could only be obtained when including the North American Cordillera. However, the ice sheets' influence on the local climate conditions is also found to be paramount for this configuration. We further suggest that the incipient ice sheets may have had a limited influence on the large-scale winter circulation as a result of their location relative the westerly mean flow. The LGM Laurentide Ice Sheet (LIS) was, however, different because of its continent-wide extent, and it may therefore have had a large influence on the planetary-scale circulation, especially in the Atlantic sector. We find that the planetary waves forced by the LIS were considerably larger than at earlier times, and, as a result of a more frequent planetary wave reflection over the Atlantic Ocean basin, an altered stationary wave field and a zonalised winter jet. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.</p>

Page generated in 0.1179 seconds