• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applied Science for Water Quality Monitoring

Khakipoor, Banafsheh 25 August 2020 (has links)
No description available.
2

A Study Of Equatorial Ionopsheric Variability Using Signal Processing Techniques

Wang, Xiaoni 01 January 2007 (has links)
The dependence of equatorial ionosphere on solar irradiances and geomagnetic activity are studied in this dissertation using signal processing techniques. The statistical time series, digital signal processing and wavelet methods are applied to study the ionospheric variations. The ionospheric data used are the Total Electron Content (TEC) and the critical frequency of the F2 layer (foF2). Solar irradiance data are from recent satellites, the Student Nitric Oxide Explorer (SNOE) satellite and the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. The Disturbance Storm-Time (Dst) index is used as a proxy of geomagnetic activity in the equatorial region. The results are summarized as follows. (1) In the short-term variations ≤ 27-days, the previous three days solar irradiances have significant correlation with the present day ionospheric data using TEC, which may contribute 18% of the total variations in the TEC. The 3-day delay between solar irradiances and TEC suggests the effects of neutral densities on the ionosphere. The correlations between solar irradiances and TEC are significantly higher than those using the F10.7 flux, a conventional proxy for short wavelength band of solar irradiances. (2) For variations ≤ 27 days, solar soft X-rays show similar or higher correlations with the ionosphere electron densities than the Extreme Ultraviolet (EUV). The correlations between solar irradiances and foF2 decrease from morning (0.5) to the afternoon (0.1). (3) Geomagnetic activity plays an important role in the ionosphere in short-term variations ≤ 10 days. The average correlation between TEC and Dst is 0.4 at 2-3, 3-5, 5-9 and 9-11 day scales, which is higher than those between foF2 and Dst. The correlations between TEC and Dst increase from morning to afternoon. The moderate/quiet geomagnetic activity plays a distinct role in these short-term variations of the ionosphere (~0.3 correlation).

Page generated in 0.1701 seconds