• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery of Triggering Relations and Its Applications in Network Security and Android Malware Detection

Zhang, Hao 30 November 2015 (has links)
An increasing variety of malware, including spyware, worms, and bots, threatens data confidentiality and system integrity on computing devices ranging from backend servers to mobile devices. To address these threats, exacerbated by dynamic network traffic patterns and growing volumes, network security has been undergoing major changes to improve accuracy and scalability in the security analysis techniques. This dissertation addresses the problem of detecting the network anomalies on a single device by inferring the traffic dependence to ensure the root-triggers. In particular, we propose a dependence model for illustrating the network traffic causality. This model depicts the triggering relation of network requests, and thus can be used to reason about the occurrences of network events and pinpoint stealthy malware activities. The triggering relationships can be inferred by means of both rule-based and learning-based approaches. The rule-based approach originates from several heuristic algorithms based on the domain knowledge. The learning-based approach discovers the triggering relationship using a pairwise comparison operation that converts the requests into event pairs with comparable attributes. Machine learning classifiers predict the triggering relationship and further reason about the legitimacy of requests by enforcing their root-triggers. We apply our dependence model on the network traffic from a single host and a mobile device. Evaluated with real-world malware samples and synthetic attacks, our findings confirm that the traffic dependence model provides a significant source of semantic and contextual information that detects zero-day malicious applications. This dissertation also studies the usability of visualizing the traffic causality for domain experts. We design and develop a tool with a visual locality property. It supports different levels of visual based querying and reasoning required for the sensemaking process on complex network data. The significance of this dissertation research is in that it provides deep insights on the dependency of network requests, and leverages structural and semantic information, allowing us to reason about network behaviors and detect stealthy anomalies. / Ph. D.
2

INFERENCE OF RESIDUAL ATTACK SURFACE UNDER MITIGATIONS

Kyriakos K Ispoglou (6632954) 14 May 2019 (has links)
<div>Despite the broad diversity of attacks and the many different ways an adversary can exploit a system, each attack can be divided into different phases. These phases include the discovery of a vulnerability in the system, its exploitation and the achieving persistence on the compromised system for (potential) further compromise and future access. Determining the exploitability of a system –and hence the success of an attack– remains a challenging, manual task. Not only because the problem cannot be formally defined but also because advanced protections and mitigations further complicate the analysis and hence, raise the bar for any successful attack. Nevertheless, it is still possible for an attacker to circumvent all of the existing defenses –under certain circumstances.</div><div><br></div><div>In this dissertation, we define and infer the Residual Attack Surface on a system. That is, we expose the limitations of the state-of-the-art mitigations, by showing practical ways to circumvent them. This work is divided into four parts. It assumes an attack with three phases and proposes new techniques to infer the Residual Attack Surface on each stage.</div><div><br></div><div>For the first part, we focus on the vulnerability discovery. We propose FuzzGen, a tool for automatically generating fuzzer stubs for libraries. The synthesized fuzzers are target specific, thus resulting in high code coverage. This enables developers to expose and fix vulnerabilities (that reside deep in the code and require initializing a complex state to trigger them), before they can be exploited. We then move to the vulnerability exploitation part and we present a novel technique called Block Oriented Programming (BOP), that automates data-only attacks. Data-only attacks defeat advanced control-flow hijacking defenses such as Control Flow Integrity. Our framework, called BOPC, maps arbitrary exploit payloads into execution traces and encodes them as a set of memory writes. Therefore an attacker’s intended execution “sticks” to the execution flow of the underlying binary and never departs from it. In the third part of the dissertation, we present an extension of BOPC that presents some measurements that give strong indications of what types of exploit payloads are not possible to execute. Therefore, BOPC enables developers to test what data an attacker would compromise and enables evaluation of the Residual Attack Surface to assess an application’s risk. Finally, for the last part, which is to achieve persistence on the compromised system, we present a new technique to construct arbitrary malware that evades current dynamic and behavioral analysis. The desired malware is split into hundreds (or thousands) of little pieces and each piece is injected into a different process. A special emulator coordinates and synchronizes the execution of all individual pieces, thus achieving a “distributed execution” under multiple address spaces. malWASH highlights weaknesses of current dynamic and behavioral analysis schemes and argues for full-system provenance.</div><div><br></div><div>Our envision is to expose all the weaknesses of the deployed mitigations, protections and defenses through the Residual Attack Surface. That way, we can help the research community to reinforce the existing defenses, or come up with new, more effective ones.</div>

Page generated in 0.072 seconds