• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Termisk Vattenpump / Thermal waterpump

Klingberg, Hans, Stendal, Marcus January 2009 (has links)
<p> </p><p>This degree project aims at developing a concept for how to use solar energy to pump up water. The target audience is people living in areas where the functioning of the electricity and water network is absent. In these areas, the hand-powered water pump is the most common technology. The degree project's goal is to find an economically viable alternative to the time consuming hand-powered water pumps. The power comes from solar energy. Studies have shown that 90% of the hand pumps that have been installed have broken down within the first three years. This is because of an incorrect basic design that severely shortens lifetime.</p><p>How would a simple and robust design look like? An information seeking phase about the conditions and techniques that exist in these areas, were the basis for the requirements of the concept. Because of this the authors chose a concept similar to a simple steam engine. The pump uses vaporized water, by means of concentrating sunlight to pump up water. In total, 33 different concepts were created. The concepts were filtered in three stages that resulted in a final concept. The final concept contains a reflective dish that concentrates the sunlight to a receiver where the water evaporates. The built up pressure forces up water towards the surface from a tank located below the groundwater. The system is designed to supply 25 families with 2.5 cubic meters of water a day. The pump is working during the daily 8 hours of sunshine. The system will have an expected low efficiency <5.3% which is the theoretical maximum efficiency. Further development of the system requires a detailed analysis of the situation on the ground. Tests should be performed to examine how well the technology works and how sensitive the system is to disturbances.</p><p> </p>
2

Termisk Vattenpump / Thermal waterpump

Klingberg, Hans, Stendal, Marcus January 2009 (has links)
This degree project aims at developing a concept for how to use solar energy to pump up water. The target audience is people living in areas where the functioning of the electricity and water network is absent. In these areas, the hand-powered water pump is the most common technology. The degree project's goal is to find an economically viable alternative to the time consuming hand-powered water pumps. The power comes from solar energy. Studies have shown that 90% of the hand pumps that have been installed have broken down within the first three years. This is because of an incorrect basic design that severely shortens lifetime. How would a simple and robust design look like? An information seeking phase about the conditions and techniques that exist in these areas, were the basis for the requirements of the concept. Because of this the authors chose a concept similar to a simple steam engine. The pump uses vaporized water, by means of concentrating sunlight to pump up water. In total, 33 different concepts were created. The concepts were filtered in three stages that resulted in a final concept. The final concept contains a reflective dish that concentrates the sunlight to a receiver where the water evaporates. The built up pressure forces up water towards the surface from a tank located below the groundwater. The system is designed to supply 25 families with 2.5 cubic meters of water a day. The pump is working during the daily 8 hours of sunshine. The system will have an expected low efficiency &lt;5.3% which is the theoretical maximum efficiency. Further development of the system requires a detailed analysis of the situation on the ground. Tests should be performed to examine how well the technology works and how sensitive the system is to disturbances.

Page generated in 0.063 seconds