• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 30
  • 30
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Microstructural characterization of laser formed high-strength-low-alloy (HSLA) steel

Kgomari, Lerato Criscelda. January 2010 (has links)
Thesis (MTech. : Engineering Metallurgy.)--Tshwane University of Technology, 2010. / Establish a qualitative and quantitative comparison between the parameters of the laser used in manufacturing a 120 mm curvature in HSLA steel parts and the micro-structural changes in the steel part. Subsequently, the final microstructure will be used to determine the reason for the poor fatigue performance of the HSLA steel after laser forming.
22

The role of interstitial nitrogen in the precipitation hardening reactions in high-chromium ferritic steels

Leitch, John Edward January 1987 (has links)
Bibliography: pages 107-108. / The effects of exposure to temperatures in the range 475 - 800°C on the hardness and associated microstructure of high chromium ferritic steels has been investigated. Low-carbon 26Cr-1Mo steels containing 0,02 - 0,04% nitrogen were found to constitute an age hardening system when quenched from a temperature of nitrogen solubility and exposed at temperatures in the range 600 - 700°C. TEM observations on thin foils revealed that hardening was associated with the formation of a high density of Cr-N zones. These grew on over-ageing into disc-shaped Cr-N precipitates situated on {100} lattice planes, and ultimately became large incoherent precipitates. Ageing at 475°C and 550°C produced hardening due to the formation of chromium-rich ferrite phases α' as a result of the miscibility gap in the Fe-Cr phase diagram. However the presence of interstitial nitrogen in solution in the steel considerably reduced the rate of hardening, especially at 475°C. TEM examination confirmed that this effect was due to the formation of Cr-N zones in preference to α'. This type of decomposition occurs by a mechanism of nucleation and growth, forming zones similar to those formed during an ageing at 600°C. When depleted of interstitial nitrogen, through precipitation at 800°C or through zone formation at 475°C, the specimens aged at 475°C underwent spinodal decomposition. Thus nitrogen in solid solution was found to have a significant effect on the 475°C hardening reaction. Precision X-ray diffraction measurements revealed the presence of secondary diffraction peaks associated with the Bragg peaks, which comfirmed the formation of Cr-rich phases during ageing at 475°C. The calculated associated lattice parameter measurements allowed estimates of the compositions of the decomposition phases to be made. These were calculated to be about 6-18% Cr in the Fe-rich and 60-80% Cr in the Cr-rich phases of the 26Cr-1Mo steel.
23

The influence of tempering on the corrosion resistance of newly developed steels

Joubert, K J January 1989 (has links)
Bibliography: pages 105-113. / This thesis deals with the effect of heat treatment on the localized corrosion resistance of the low carbon, chromium containing steels, designated 825, 102A and 122 which recently have been developed. The potentiodynamic polarization technique has been employed to determine the corrosion characteristics of the three steels. The results do not accurately reflect the effect heat treatment has on corrosion rates but scanning electron microscopy of corroded surfaces does allow a characterization. Both tempering temperature and time at temperature have a significant influence on the corrosion behaviour of chromium steels because the type, size and morphology of carbide precipitates are determined by the temperature and time of temperi ng. Localized pitting corrosion predominates for specimens tempered at temperatures below 450°C. Intergranular corrosion together with general corrosion occur after tempering at temperatures. in excess of 450°C. The resul ts of hardness tests show that secondary hardeni ng occurs after tempering between 450°C and 600°C. Secondary hardening suggests the presence of chromium carbides which deplete the surrounding matrix of chromium leaving it susceptible to active general corrosion (within the grains) and intergranular corrosion (at grain boundaries). A model showing the effect that 12% chromium, in comparison to 8% chromium, has on the corrosion resistance, is proposed. The significance of these results with regard to the application of the steels is discussed.
24

Hot model simulation of the bottom blown steelmaking process

Barrera Cardiel, Gerardo January 1985 (has links)
No description available.
25

Desenvolvimento do aço microligado para rodas ferroviárias / Development of microalloyed steel for railway wheels

Villas Bôas, Renato Lyra 07 January 2010 (has links)
Orientador: Paulo Roberto Mei / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-16T10:24:52Z (GMT). No. of bitstreams: 1 VillasBoas_RenatoLyra_M.pdf: 13424471 bytes, checksum: c7a6d60275922ab9255b8f8e74fd29e1 (MD5) Previous issue date: 2010 / Resumo: Neste trabalho foi desenvolvido um aço microligado com 0,7% de carbono para fabricação de rodas ferroviárias. Tomou-se como base um aço classe C da norma AAR M-107 e adicionou-se nióbio e molibdênio. A pesquisa foi realizada em duas etapas distintas. A primeira etapa estudou-se o efeito da adição de nióbio e molibdênio no aço com 0,7% de carbono antes e após a deformação por laminação, simulando o forjamento real das rodas ferroviárias produzidas na MWL Brasil. Com os dados disponíveis passou-se à segunda etapa da pesquisa onde foram fabricadas e ensaiadas rodas ferroviárias na MWL Brasil usando um aço com composição química semelhante à utilizada na primeira etapa para observar o efeito do nióbio e molibdênio nas mesmas. Os aços foram austenitizados a 1250 °C para solubilização do nióbio na austenita e deformados a partir de 1200 °C. Na primeira etapa o aço foi laminado em 4 passes sofrendo uma deformação total na espessura de 67% e resfriado ao ar. Na segunda etapa, o aço foi forjado pelo processo de fabricação usado pela MWL Brasil. Após o tratamento térmico, foram realizados ensaios de dureza da perlita, tração, impacto, tenacidade à fratura, além de microscopia ótica e medida do tamanho de grão austenítico. Observou-se aumento no limite de escoamento (8,5%), ductilidade (15%), energia de impacto (29%), tenacidade à fratura (33%) e temperabilidade pela microadição de nióbio e molibdênio, mostrando que esses elementos podem melhorar o desempenho das rodas ferroviárias atualmente produzidas. / Abstract: In this work it was developed a microalloyed steel with 0.7% carbon to manufacture railway wheels. It was taken as basis a steel class C of standard AAR M-107 and added niobium and molybdenum. The research was conducted in two stages. The first step was studied the effect of the addition of niobium and molybdenum on 0.7% C steel before and after deformation by rolling, simulating the actual forging of railroad wheels process in MWL Brasil. With the available data the second stage of the research was conducted, manufacturing and testing railway wheels in MWL Brasil, using a steel with similar chemical composition to that was used in the first step to observe the effect of niobium and molybdenum in them. The steels were austenitized at 1250 °C for niobium solubilization in austenite and deformed from 1200 °C. In the first stage, the steels were rolled at 4 passes undergoing a total deformation of 67% in thickness and aircooled. In the second step, the steels were forged by MWL Brasil manufacturing process. After heat treatment, tests on pearlite hardness, tensile, impact, fracture toughness were performed. Microstructure was observed by optical microscopy and the austenite grain size was measured. It was observed an increasing on the yield strength (8,5%), ductility (15%), impact energy (29%), fracture toughness (33%) and hardenability by niobium and molybdenum microalloying, showing that these elements can improve the performance of railway wheels nowadays produced by MWL Brasil. / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
26

Hot model simulation of the bottom blown steelmaking process

Barrera Cardiel, Gerardo January 1985 (has links)
No description available.
27

Modeling of high fluence Ti ion implantation and vacuum carburization in steel

Rangaswamy, Mukundhan January 1985 (has links)
Concentration-versus-depth profiles have been calculated for Ti and C in Ti-implanted 52100 steel. A computer formalism was developed to account for diffusion and mixing processes, as well as sputtering and lattice dilation. A Gaussian distribution of Ti was assumed to be incorporated at each time interval. The effects of sputtering and lattice dilation were then included by means of an appropriate coordinate transformation. C was assumed to be gettered from the vacuum system in a one-to-one ratio with the surface Ti concentration up to a saturation point. Both Ti and C were allowed to diffuse. A series of experimental (Auger) concentration-versus-depth profiles of Ti implanted steel were analyzed using the above-mentioned assumptions. A best fit procedure for these curves yielded information on the values of the sputtering yield, range and straggling, as well as the mixing processes that occur during the implantation. The effective diffusivity of Ti was found to be 6x10⁻¹⁵ cm²/sec, a value that is consistent with the cascade mixing mechanism. The effective diffusivity of C was found 6x10⁻¹⁵ cm²/sec, and the sputtering yield by Ti atoms was best fit by a value of about 2. The observed range and straggling values were in very good agreement with the values predicted by existing theories, so long as the lattice was allowed to dilate. / M.S.
28

Flow analysis of a four-strand steelmaking tundish using physical and numerical modelling

Cloete, Jan Hendrik 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: In modern steelmaking a tundish serves as an important metallurgical reactor to remove inclusions and maintain thermal and chemical homogeneity in the product. In this study the flow behaviour in a four strand tundish was investigated by means of a 1/2 scale water model, based on Froude number similarity, as well as by using numerical modelling. Both the numerical study and physical model were used to characterise residence time distribution (RTD) in the vessel and to calculate properties pertaining to the tundish flow regime. The three different tundish configurations investigated in this study are: a bare tundish with no flow control devices, a tundish with a turbulence inhibitor and a tundish using a turbulence inhibitor with holes in combination with dams. Preliminary investigations focussed on the framework for obtaining an accurate numerical solution within reasonable computational times. The effect of assuming symmetry and dynamically steady flow in the numerical model was shown to be small relative to the effect of grid size and justifiable by the savings in computational time. The grid independence study indicated the importance of using a finer mesh in areas of high velocity gradients to obtain realistic results and also to limit the number of computational cells. A procedure using gradient adaptation was used to refine the mesh automatically in the required regions for different tundish geometries. Results also showed that the inlet boundary of the numerical model should be selected at the ladle outlet, since assuming a flat velocity profile at the nozzle port resulted in significant changes in the RTD response. Comparison of the results obtained using the numerical model with those from physical experiments yielded an average error of less than 10%. This was assumed to be a good prediction, considering the assumptions employed in the numerical model. Both the physical and numerical models showed that a tundish without flow control devices was prone to significant short circuiting. The addition of a turbulence inhibitor was shown to be successful in preventing short circuiting and provided surface directed flow, which is thought to aid inclusion removal in the slag. Additionally, the minimum, peak and mean residence times and plug flow volume fraction were increased significantly, while the dead volume fraction decreased. However, using a turbulence inhibitor with holes in combination with dams showed that this configuration may cause increased refractory wear together with increased risk of slag entrainment due to flow patterns with increased surface turbulence. It also showed that the short-circuiting might not be eliminated completely. This indicates that certain design changes to tundish flow control systems can introduce problems that outweigh the benefits of the altered flow patterns. Furthermore, the numerical method, which was based on the water model, was modified to simulate the high temperature steel process. A very good match was obtained between the results using the two different numerical models. This serves as additional evidence that tundish water modelling based on Froude number similarity provides a good representation of the actual industrial process. Using the numerical model based on the high temperature steel process the effect of turbulence inhibitor shape was studied for four different turbulence inhibitor designs. Results showed the best performance, based on flow characteristic properties and surface turbulence values, was achieved for the design using a rectangular box-like shape with flanges at the top. However, the comparison emphasized the effect of the turbulence inhibitor shape on the flow behaviour, as each design yielded completely different flow patterns. It was also observed that a good turbulence inhibitor provided an optimum amount of turbulent suppression. Insufficient suppression would cause fast flows, which will result in insufficient residence time for inclusion flotation and high surface turbulence values, which may cause slag entrainment. On the other hand, too much suppression may increase the variation between strands. / AFRIKAANSE OPSOMMING: Die verdeeltrog speel ‘n belangrike rol in die moderne staalvervaardigingsproses deur inklusies te verwyder en termiese en chemiese homogeniteit in die produk te verseker. In hierdie studie is die vloeigedrag in ‘n verdeeltrog met vier uitlate bestudeer deur middel van ‘n 1:2-skaal watermodel, gebaseer op Froude-getal gelykheid, sowel as deur numeriese modellering. Beide die numeriese en watermodel is gebruik om die verblyftyd-distribusie in die trog te karakteriseer en om waardes te bereken wat die vloeigedrag in die verdeeltrog beskryf. Drie verskillende verdeeltrog-opstellings is in hierdie studie bestudeer, naamlik: ‘n leë verdeeltrog met geen vloeibeheertoestelle nie, ‘n verdeeltrog met ‘n turbulensie- inhibeerder en ‘n verdeeltrog wat gebruik maak van ‘n turbulensie-inhibeerder met gate, gekombineer met lae damwalle. Vroeë ondersoeke het gefokus op ‘n metode om akkurate numeriese resultate binne aanvaarbare tye te verkry. Die invloed van die aannames van simmetrie en dinamiese gestadigde vloei op die resultate is bepaal om klein te wees teenoor dié van die roostergrootte. Die gebruik van die aannames is dus geregverdig deur die afname in berekeningstyd wat dit meebring. Die roosteronafhanklikheidstudie het getoon dat dit belangrik is om die vloeivergelykings oor klein volume-eenhede op te los in areas van hoë snelheidsgradiënte, beide om realistiese resultate te verseker en om die aantal volume-eenhede te beperk. ‘n Prosedure wat gebruik maak van gradiëntaanpassing is gebruik om die roostergrootte outomaties te verklein in die areas met hoë snelheidsgradiënte vir verskillende verdeeltrog-opstellings. Resultate het ook getoon dat dit belangrik is om die inlaatgrens van die numeriese model by die smeltpot se uitlaat te kies, aangesien noemenswaardige verskille in die verblyftyd-distribusie waargeneem is wanneer ‘n uniforme snelheidsprofiel aanvaar is waar die metaal die verdeeltrog binnegaan. Daar is gevind dat die resultate by die numeriese en watermodelle verskil met ‘n gemiddelde fout van ongeveer 10%. Dit word beskou as ‘n goeie ooreenstemming, as die aannames wat in die numeriese model gebruik word in ag geneem word. Beide die numeriese en watermodelle het getoon dat die metaalvloei in die leë verdeeltrog geneig is om die kortste roete na die uitlate te kies. Deur van ‘n turbulensie inhibeerder gebruik te maak word hierdie probleem opgelos deur die metaalvloei opwaarts te forseer. In die proses neem die minimum-, piek- en gemiddelde verblyftye, sowel as die propvloei volumefraksie, toe, terwyl die dooievloei fraksie afneem. Die turbulensie inhibeerder met die gate en die lae damwalle is egter meer geneig tot erosie van die vuurvaste materiaal en kan ook vloeipatrone veroorsaak wat metaalskuimdruppels in die metaal kan opneem. Verder volg ‘n klein fraksie van die vloei steeds ‘n kortpad na die uitlaat. Hierdie resultate toon dat sekere veranderings aan verdeeltrog vloeibeerheerstelsels nadelige gevolge kan hê wat enige positiewe gevolge uitkanselleer. Verder is die numeriese metode wat tot dusver op die watersisteem gebaseer is, aangepas om die vloei in die hoëtemperatuur staalproses te simuleer. ‘n Baie goeie vergelyking is verkry tussen die resultate wat die twee numeriese modelle voorspel. Hierdie dien as ‘n verdere bewys dat ‘n watermodel, wat op Froude-getal gelykheid gebaseer is, die industriële proses akkuraat kan simuleer. Deur gebruik te maak van die numeriese model van die hoë temperatuur staalproses, is die effek van die turbulensie-inhibeerder se vorm vir vier verskillende ontwerpe bestudeer. Die studie het getoon dat die beste resultate vir vloeikarakteriserende eienskappe en oppervlak- turbulensie verkry is met ‘n reghoekige ontwerp. Die resultate beklemtoon egter die belangrikheid van die invloed van die turbulensie-inhibeerder se vorm op die vloeigedrag in die verdeeltrog, aangesien elke vorm noemenswaardige verskillende vloeipatrone opgelewer het. Daar is opgemerk dat ‘n goeie turbulensie-inhibeerder ‘n optimale hoeveelheid turbulensie onderdrukking veroorsaak. In die geval van te min onderdrukking is die verblyftye te kort en die oppervlak turbulensie te hoog. Te veel onderdrukking kan egter lei tot groot variasie in die eienskappe van die metaal by die verskillende uitlate.
29

Studium slévárenských vad v masivních odlitcích / Study of foundry defects in heavy castings

Čech, Jan January 2013 (has links)
A massive castings defects are examined in this doctoral thesis, specialise in steels passing through peritectic transformation. There are typical types of defects at massive steel castings, as contrasted to „ordinary“ internal and surface ones. For massive steel castings are typical defects under feeders like conchoidal fractures, segregations, microporesities, reoxidation products. Combination of Al and Zr is an ordinary final deoxidation of EOP and LF steel for castings in ŽĎAS a.s. foundry. The aim of Al + Zr combination was to both deep deoxidation by Al (decrease of bubbles risk) and denitrification by Zr (decrease of conchoidal fractures). This theses refute premission mentioned above and verified persisting risk of defects under massive feeders, even though Al + Zr deoxidation is used. A final deoxidation by increased amount of Al was examinated, in combination with other deoxidation agents. Castings had 11 [cm] maximal modulus, and occurence of conchoidal fracture, reoxidation products and primary austenite grain size was evaluated. A selected optimal final deoxidations (Al, Al+Ti, Al+Zr) as a result from experiment described above, were evaluated on castings with 15 [cm] maximal modulus. The result of experiment is, that is not possible to repeatedly produce massive steel casting using EOP metallurgical equipment without defects under feeders, despite of deoxidation and pouring temperature optimalization. The defect indications look like conchoidal fracture, but there are microporesity and impurities instead. Finally, castings with maximal modulus 15 [cm] were produced using so called secondary metallurgy (LF, VD). Secondary metallurgy allowed to both significant decrease of sulfur and degassing of melted metal. Only this metallurgical procedure guarantees production of heavy steel castings without typical defects under massive feeders
30

Studium slévárenských vad v masivních odlitcích / RESEARCH OF HEAVY CASTING METALLURGICAL DEFECTS

Čech, Jan January 2013 (has links)
A massive castings defects are examined in this doctoral thesis, specialise in steels passing through peritectic transformation. There are typical types of defects at massive steel castings, as contrasted to „ordinary“ internal and surface ones. For massive steel castings are typical defects under feeders like conchoidal fractures, segregations, microporesities, reoxidation products. Combination of Al and Zr is an ordinary final deoxidation of EOP and LF steel for castings in ŽĎAS a.s. foundry. The aim of Al + Zr combination was to both deep deoxidation by Al (decrease of bubbles risk) and denitrification by Zr (decrease of conchoidal fractures). This theses refute premission mentioned above and verified persisting risk of defects under massive feeders, even though Al + Zr deoxidation is used. A final deoxidation by increased amount of Al was examinated, in combination with other deoxidation agents. Castings had 11 [cm] maximal modulus, and occurence of conchoidal fracture, reoxidation products and primary austenite grain size was evaluated. A selected optimal final deoxidations (Al, Al+Ti, Al+Zr) as a result from experiment described above, were evaluated on castings with 15 [cm] maximal modulus. The result of experiment is, that is not possible to repeatedly produce massive steel casting using EOP metallurgical equipment without defects under feeders, despite of deoxidation and pouring temperature optimalization. The defect indications look like conchoidal fracture, but there are microporesity and impurities instead. Finally, castings with maximal modulus 15 [cm] were produced using so called secondary metallurgy (LF, VD). Secondary metallurgy allowed to both significant decrease of sulfur and degassing of melted metal. Only this metallurgical procedure guarantees production of heavy steel castings without typical defects under massive feeders

Page generated in 0.0884 seconds