• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 36
  • 14
  • 10
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structural parameter based design and optimisation for dual-band ESPAR antenna system

Bembe, Mncedisi Jacob 12 March 2012 (has links)
M.Ing. / This work considers a dual band electronically steerable parasitic array radiator (ESPAR) antenna system. This system is designed with one actively fed radiating element and N-parasitic radiating elements. The radiation pattern can be electronically controlled by means of the loads terminating the parasitic elements. The antenna system is designed as ESPAR to have a minimum number of controlling elements thereby minimising the power consumed. The dual band operation of this antenna is for the frequency bands of the wireless local area network (WLAN), which are 2.412-2.482 GHz for IEEE 802.11b/g (known as the 2.4 GHz band) and 5.15-5.825 GHz for IEEE 802.11a (known as the 5 GHz band). In the upper band, only the 5.8 GHz sub-band was considered. The dual-band capability was targeted by conducting a structural parameter modification on the antenna system. The structural modification involves optimisation of the length of the active element, the length of the parasitic element, the distance of the parasitic element from the active element and most importantly, by application of a loading technique on the elements. The loading was done by using optimisation tools, such as fminsearch, fminbnd and the genetic algorithm. The specific circuit that was used for the loading was a series connection inductors inserted into the antenna’s elements at positions found via a global optimization.. The method used was to first identify the optimal length per specific resonant frequency and consider the optimal length with respect to both resonant frequencies. The second step was to load the three resulting optimised different monopoles, and the loading with results closest to the requirements. The optimum monopole of the three in the second step was then used as the fixed input parameter for the main optimisation of ESPAR antenna. Using a ground plane with a skirt, an acceptable return loss performance has been achieved for the antenna's main building M.J. Bembe ii block, a monopole element, in both frequency bands. The challenge was found in steering of the beam in different directions; it was then concluded that the usage of more elements could provide the necessary freedom for the optimisation process. Six elements were arranged symmetrically close to the active fed element in order to achieve a dual band resonance, with different designs meeting the requirements differently. This is the first report showing an ESPAR antenna optimisation which includes the loading of elements with lengths and distance optimisation.
12

3-D antenna array analysis using the induced EMF method

Abdul Malek, Norun F. January 2013 (has links)
The effect of mutual coupling between elements plays a crucial role to the performance of the antenna arrays. The radiation patterns of antenna arrays will be altered by the coupling effect from the adjacent elements thus reducing the accuracy and resolution in direction finding application. This research developed and validated the novel 3-D Algorithm to calculate the far-field pattern of dipole arrays arranged in three dimensions and in any configuration (both in straight and slanted position). The effect of mutual coupling has been accounted using the Induced EMF method. The computation is performed on 2x2 parallel dipoles and 12 dipoles arranged at the edge of a cube. The results are validated with other electromagnetic techniques such as Method of Moment (MoM) and Finite Difference Time-Domain (FDTD). Then, a 2x2 dipole array is chosen for beam steering and experiment validation due to its ease of implementation and feeding network. The array optimisation to control the pattern is performed using a genetic algorithm. The far-field pattern computed using the 3-D algorithm might be less accurate than other 3-D electromagnetic techniques but its array optimisation is faster and efficient. The simulation and measurement results are in good agreement with each other confirmed the validity of the 3-D algorithm.
13

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays

Abdalla, Mohamed 23 September 2009 (has links)
This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers. The independent L and Q tuning is achieved using a modided gyrator-C architecture with an additional feedback element. A general framework is developed for this Q- enhancement technique making it applicable to any gyrator-C based TAI. The design of a 1.5V, grounded, 0.13um CMOS TAI is presented. The proposed circuit achieves a 0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100. Furthermore, printed and integrated versions of tunable positive/negative refractive index (PRI /NRI) phase shifters, are presented in this thesis. The printed phase shifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of the TLs, which allows for a single MMIC implementation. Detailed experimental results are presented in the thesis. As an example, the printed design achieves a phase of -40 to +34 degrees at 2.5GHz. As another application for the TAI, a reconfigurable CMOS directional coupler is presented in this thesis. The proposed coupler allows electronic control over the coupling coefficient, and the operating frequency while insuring a low return loss and high isolation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna. Finally, a planar electronically steerable patch array is presented. The 4-element array uses the tunable PRI/NRI phase shifters to center its radiation about the broadside direction. This also minimizes the main beam squinting across the operating bandwidth. The feed network of the array uses impedance transformers, which allow identical interstage phase shifters. The proposed antenna array is capable of continuously steering its main beam from -27 to +22 degrees of the broadside direction with a gain of 8.4dBi at 2.4GHz.
14

Analysis of Optimization Methods in Multisteerable Filter Design

Zanco, Philip 10 August 2016 (has links)
The purpose of this thesis is to study and investigate a practical and efficient implementation of corner orientation detection using multisteerable filters. First, practical theory involved in applying multisteerable filters for corner orientation estimation is presented. Methods to improve the efficiency with which multisteerable corner filters are applied to images are investigated and presented. Prior research in this area presented an optimization equation for determining the best match of corner orientations in images; however, little research has been done on optimization techniques to solve this equation. Optimization techniques to find the maximum response of a similarity function to determine how similar a corner feature is to a multioriented corner template are also explored and compared in this research.
15

Low Cost Direction Finding with the Electronically Steerable Parasitic Array Radiator (ESPAR) Antenna

Berger, Jonathan Michael 27 October 2006 (has links)
Faculty of Engineering and the Built Environment; School of Electrical and Information System; MSC Dissertation / In this paper, the Electronically Steerable Parasitic Array Radiator (ESPAR) antenna, developed by the Advanced Telecommunications Research Institute (ATR) in Japan was analyzed to determine its feasibility as a low cost direction finding (DF) system. Simulations of the antenna were performed in SuperNEC and Matlab was used to determine the direction of arrival (DOA) using the Reactance Domain multiple signal classification (MUSIC) algorithm. Results show the ideal configuration has 6 parasitic elements with a diameter of 0.5 . Up to 5 periodic, uncorrelated signals spread 360° in azimuth and above 45° elevation produce sharp peaks in the MUSIC spectra. Azimuth separations of only 2° at 40 dB are resolvable while signals arriving with 25% full power are still detectable. For the DOA to be resolved the radiation pattern should be asymmetrical and hence the reactance set should have a range of unequal values. Comparative results show that the 6 element ESPAR offers excellent overall performance despite the reduction in cost and is comparable in performance to the 6 element uniform linear array.
16

Space-time sampling strategies for electronically steerable incoherent scatter radar

Swoboda, John Philip 10 March 2017 (has links)
Incoherent scatter radar (ISR) systems allow researchers to peer into the ionosphere via remote sensing of intrinsic plasma parameters. ISR sensors have been used since the 1950s and until the past decade were mainly equipped with a single mechanically steerable antenna. As such, the ability to develop a two or three dimensional picture of the plasma parameters in the ionosphere has been constrained by the relatively slow mechanical steering of the antennas. A newer class of systems using electronically steerable array (ESA) antennas have broken the chains of this constraint, allowing researchers to create 3-D reconstructions of plasma parameters. There have been many studies associated with reconstructing 3-D fields of plasma parameters, but there has not been a systematic analysis into the sampling issues that arise. Also, there has not been a systematic study as to how to reconstruct these plasma parameters in an optimum sense as opposed to just using different forms of interpolation. The research presented here forms a framework that scientists and engineers can use to plan experiments with ESA ISR capabilities and to better analyze the resulting data. This framework attacks the problem of space-time sampling by ESA ISR systems from the point of view of signal processing, simulation and inverse theoretic image reconstruction. We first describe a physics based model of incoherent scatter from the ionospheric plasma, along with processing methods needed to create the plasma parameter measurements. Our approach leads to development of the space-time ambiguity function, forming a theoretical foundation of the forward model for ISR. This forward model is novel in that it takes into account the shape of the antenna beam and scanning method along with integration time to develop the proper statistics for a desired measurement precision. Once the forward model is developed, we present the simulation method behind the Simulator for ISR (SimISR). SimISR uses input plasma parameters over space and time and creates complex voltage samples in a form similar to that produced by a real ISR system. SimISR allows researchers to evaluate different experiment configurations in order to efficiently and accurately sample specific phenomena. We present example simulations using input conditions derived from a multi-fluid ionosphere model and reconstructions using standard interpolation techniques. Lastly, methods are presented to invert the space-time ambiguity function using techniques from image reconstruction literature. These methods are tested using SimISR to quantify accurate plasma parameter reconstruction over a simulated ionospheric region.
17

Curvilinear Structures Segmentation and Tracking in Interventional Imaging / Segmentation et suivi de structures curvilinéaires en imagerie interventionnelle

Honnorat, Nicolas 17 January 2013 (has links)
Cette thèse traite de la segmentation et du suivi de structures curvilinéaires. La méthodologie proposée est appliquée à la segmentation et au suivi des guide-fils durant les interventions d’angioplastie. Pendant ces opérations, les cardiologues s’assurent que le positionnement des différents outils est correct au moyen d’un système d’imagerie fluoroscopique temps-réel. Les images obtenues sont très bruitées et les guides sont, en conséquence, particulièrement difficiles à segmenter. Les contributions de cette thèse peuvent être regroupées en trois parties. La première est consacrée à la détection des guides, la seconde a leur segmentation et la dernière a leur suivi. La détection partielle des guide-fils est réalisée soit par la sélection d’un opérateur de filtrage approprié soit en utilisant des méthodes modernes d’apprentissage artificiel. Dans un premier temps, un système réalisant un Boosting asymétrique pour entraîner un détecteur de guides est présenté. Par la suite, une méthode renforçant la réponse d’un filtre orientable au moyen d’une variante efficace de vote tensoriel est décrite. Dans la seconde partie, une approche ascendante est proposée, qui consiste à regrouper des points sélectionnés par le détecteur de fil, à extraire des primitives des agrégats obtenus et a les lier. Deux procédures locales de regroupement des points sont étudiées : une reposant sur un clustering de graphe non supervisé suivi d’une extraction de segments de droites ; et l’autre reposant sur un modèle graphique puis une extraction d’axe central. Par la suite, deux méthodes de liaison des primitives sont étudiées : la première repose sur une approche de programmation linéaire, et la seconde sur une heuristique de recherche locale. Dans la dernière partie, des méthodes de recalage sont utilisées pour améliorer la segmentation et pour suivre les fils. Le suivi propos´e couple un suivi iconique avec un suivi géométrique contenant un modèle prédictif. Cette méthode utilise un modèle graphique déterminant à la fois une position du guide-fil (segmentation) et des correspondances (tracking). La solution optimale de ce modèle graphique décrit simultanément les déplacements du guide-fil et les appariements entre points d’intérêt qui en sont extraits, fournissant ainsi une estimation robuste des déformations du fil par rapport aux grands déplacements et au bruit. / This thesis addresses the segmentation and the tracking of thin curvilinear structures. The proposed methodology is applied to the delineation and the tracking of the guide-wires that are used during cardiac angioplasty. During these interventions, cardiologists assess the displacement of the different devices with a real-time fluoroscopic imaging system. The obtained images are very noisy and, as a result, guide-wires are particularly challenging to segment and track. The contributions of this thesis can be grouped into three parts. The first part is devoted to the detection of the guide-wires, the second part addresses their segmentation and the last part focuses on their spatio-temporal tracking. Partial detection of guide-wires is addressed either through the selection of appropriate filter operators or using modern machine learning methods. First, a learning framework using an asymmetric Boosting algorithm for training a guidewire detector is presented. A second method enhancing the output of a steerable filter by using an efficient tensor voting variant is then described. In the second part, a bottom-up method is proposed, that consists in grouping points selected by the wire detector, in extracting primitives from these aggregates and in linking these primitives together. Two local grouping procedures are investigated: one based on unsupervised graph-based clustering followed by a linesegment extraction and one based on a graphical model formulation followed by a graph-based centerline extraction. Subsequently, two variants of linking methods are investigated: one is based on integer programming and one on a local search heuristic. In the last part, registration methods are exploited for improving the segmentation via an image fusion method and then for tracking the wires. This latter is performed by a graph-based iconic tracking method coupled with a graphbased geometric tracking that encodes to certain extend a predictive model. This method uses a coupled graphical model that seeks both optimal position (segmentation) and spatio-temporal correspondences (tracking). The optimal solution of this graphical model simultaneously determines the guide-wire displacements and matches the landmarks that are extracted along it, what provides a robust estimation of the wire deformations with respect to large motion and noise.
18

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays

Abdalla, Mohamed 23 September 2009 (has links)
This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers. The independent L and Q tuning is achieved using a modided gyrator-C architecture with an additional feedback element. A general framework is developed for this Q- enhancement technique making it applicable to any gyrator-C based TAI. The design of a 1.5V, grounded, 0.13um CMOS TAI is presented. The proposed circuit achieves a 0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100. Furthermore, printed and integrated versions of tunable positive/negative refractive index (PRI /NRI) phase shifters, are presented in this thesis. The printed phase shifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of the TLs, which allows for a single MMIC implementation. Detailed experimental results are presented in the thesis. As an example, the printed design achieves a phase of -40 to +34 degrees at 2.5GHz. As another application for the TAI, a reconfigurable CMOS directional coupler is presented in this thesis. The proposed coupler allows electronic control over the coupling coefficient, and the operating frequency while insuring a low return loss and high isolation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna. Finally, a planar electronically steerable patch array is presented. The 4-element array uses the tunable PRI/NRI phase shifters to center its radiation about the broadside direction. This also minimizes the main beam squinting across the operating bandwidth. The feed network of the array uses impedance transformers, which allow identical interstage phase shifters. The proposed antenna array is capable of continuously steering its main beam from -27 to +22 degrees of the broadside direction with a gain of 8.4dBi at 2.4GHz.
19

Micromanipulation Of Biological Particles With Optical Tweezers

Bayoudh, Sonia Unknown Date (has links)
Following the first demonstration in 1987 by Arthur Ashkin of trapping of biological objects with infrared laser light, optical tweezers have become increasingly useful and versatile tool in a variety of non-contact micromanipulation experiments in biological applications. In this thesis we demonstrated various applications of optical tweezers in botanical sciences, chemical engineering and anatomical sciences. The investigation of the three-dimensional shape of spinach chloroplasts has been accomplished. This was done using a steerable and a stationary trap system. A trapped rotating calcite crystal positioned close to a chloroplast provided means for inducing the rotation and orientation of chloroplast. The utility of rotating birefringent particles is demonstrated for the first time in biological applications. The stirrer method is a versatile method in orienting any biological object to study its shape and/or structure. Also, we demonstrated the ability of optical tweezers to fix and displace chloroplasts inside a living spinach plant cell. In the second part of the work described in this thesis, the steerable trap was used to study the viscoelastic properties of a polymeric filament that connects a single bacterium to an activated sludge floc. Also we estimated the minimum bonding force that can cause a weak interaction between the bacterium surface and the filament using optical tweezers as a transducer. This force was estimated to be at least 10 pN. These measurements are of value in improving activated sludge flocculation and ultimately the wastewater treatment process. In addition, the steerable trap was used to move small organelles inside large bacteria cells. The repositioning of organelles resulted in creating new internal cell structure. In the final part of the thesis, experiments are described where the laser tweezers system was combined with a cw argon-ion laser microbeam to investigate the fusion of smooth muscle cells and macrophages. In order to minimize the optical damage to the cells, a special arrangement was established to create short pulses for cutting the contact of the cell membrane of the two-fusion cell partners. The effectiveness of the cutting function of the pulsed system when used at 488 nm wavelength varied from cell to cell. The laser parameters such as laser power, pulse duration and repetition rate were varied in order to obtain the best working function of the setup. But overall the results indicate that the relatively long (ms) pulses possible may not be well suited to such applications.
20

Návrh řízeného příďového podvozku pro letoun PS-28 Cruiser / Front landing gear design of PS-28 Cruiser aircraft

Marcinko, Peter January 2016 (has links)
This diploma thesis deals with the design of the front landing gear with steering nose leg and hydropneumatic shock absorber, designed for aircraft PS - 28 Cruiser. In the thesis there was created design of basic types of front landing gear and the best option was selected. The work is further elaborated design of hydropneumatic shock absorber and comparise with the measured load. At the end of the work it was created the structural design of the front landing gear.

Page generated in 0.0375 seconds