• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Multi-wavelength survey of the Young Stellar Cluster Cep OB3b

Allen, Thomas S. 19 December 2014 (has links)
No description available.
2

MASSCLEAN - MASSive CLuster Evolution and ANalysis Package - A New Tool for Stellar Clusters

Popescu, Bogdan 05 August 2010 (has links)
No description available.
3

Star and stellar cluster formation in gas-dominated galaxies / Formation d’étoiles et d’amas stellaires dans les galaxies dominées par le gaz.

Fensch, Jérémy 28 September 2017 (has links)
Nous étudions la formation d’étoiles et d’amas d’étoiles dans les galaxies dominées par le gaz. Ce terme réfère en premier lieu aux galaxies de l’époque du pic de formation d’étoiles dans l’histoire de l’Univers, qui s’est déroulé vers z ~ 2, mais aussi à leurs analogues locaux, les galaxies naines de marées. En premier lieu, en utilisant des simulations numériques, nous montrons que les galaxies massives typiques de z=2, avec une fraction de gaz d’environ 50%, forment des structures gazeuses massives (10**7-8 masses solaires) et liées gravitationnellement, appelées grumeaux dans la suite. Ces grumeaux ne se forment dans des galaxies avec une fraction de gaz inférieure à 25%. Nous présentons ensuite une étude observationnelle d’un analogue local de grumeaux de galaxies à z=2, la galaxie naine de marée NGC 5291N. Une analyse des raies d’émission de cette galaxie montre la présence de chocs sur les pourtours de l’objet. La photométrie des amas d’étoiles de cette galaxie montre que les amas les plus jeunes (< 10 millions d’années) sont significativement moins massifs que les amas plus âgés. Ceci peut être le signe de fusions progressives d’amas et/ou d’une forte activité de formation stellaire dans ce système il y a environ 500 millions d’années.Dans un second lieu nous étudions comment la fraction de gaz influe sur la formation d’étoiles et d’amas stellaires dans des fusions de galaxies à z=2. En utilisant des simulations numériques nous montrons que ces fusions n’augmentent que relativement peu le taux de formation d’étoiles et d’amas stellaires comparativement aux fusions de galaxies locales, à faible fraction de gaz. Nous montrons que ceci est due à une saturation de plusieurs facteurs physiques, qui sont déjà présents naturellement dans les galaxies isolées à z=2 et sont donc comparativement peu accentués par les fusions. Il s’agit de la turbulence du gaz, des zones de champ de marée compressif et des flux de matières vers le noyau de la galaxie. Nous montrons aussi que les structures stellaires formées au sein des grumeaux de gaz sont préservées par la fusion : elles sont éjectées des disques et orbitent dans le halo de la galaxie résultante de la fusion, où elles peuvent devenir les progéniteurs de certains amas globulaires / We study the formation of stars and stellar clusters in gas-dominated galaxies. This term primarily refers to galaxies from the epoch of the peak of the cosmic star formation history, which occurred at z ~ 2, but also to their local analogues, the tidal dwarf galaxies.Firstly, using numerical simulations, we show that the massive galaxies at z = 2, which have a gas fraction of about 50%, form massive (10**7-8 solar masses) and gravitationally bound structures, which we call clumps thereafter. These clumps do not form in galaxies with a gas fraction below 25%. We then present an observational study of a local analogue of a z = 2 galactic clump, which is the tidal dwarf galaxy NGC 5291N. The analysis of emission lines show the presence of shocks on the outskirts of the object. Photometry of this galaxy’s stellar clusters show that the youngest clusters (< 10 million years) are significantly less massive than older clusters. This could be the sign of ongoing cluster mergers and/or of a strong star formation activity in this system about 500 million years ago).Secondly, we study how the gas fraction impacts the formation of stars and stellar clusters in galaxy mergers at z = 2. Using numerical simulations we show that these mergers only slightly increase the star and stellar cluster formation rate, compared to local galaxy mergers, which have a lower gas fraction. We show that this is due to the saturation of several physical quantities, which are already strong in isolated z=2 galaxies and are thus less enhanced by the merger. These factors are gas turbulence, compressive tides and nuclear gas inflows, We also show that the stellar structures formed in the gaseous clumps are preserved by the fusion: they are ejected from the disk and orbit in the halo of the remnant galaxy, where they may become the progenitors of some globular clusters
4

Formation of stars and stellar clusters in galactic environment

Smilgys, Romas January 2018 (has links)
Star and stellar cluster formation in spiral galaxies is one of the biggest questions of astrophysics. In this thesis, I study how star formation, and the formation of stellar clusters, proceeds using SPH simulations. These simulations model a region of 400 pc and 107 solar masses. Star formation is modelled through the use of sink particles which represent small groups of stars. Star formation occurs in high density regions, created by galactic spiral arm passage. The spiral shock compresses the gas and generates high density regions. Once these regions attain sufficiently high density, self-gravity becomes dominant and drives collapse and star formation. The regions fragment hierarchically, forming local small groups of stars. These fall together to form clusters, which grow through subsequent mergers and large scale gas infall. As the individual star formation occurs over large distances before forming a stellar cluster, this process can result in significant age spreads of 1-2 Myrs. One protocluster is found to fail to merge due to the large scale tidal forces from the nearby regions, and instead expands forming a dispersed population of young stars such as an OB association.

Page generated in 0.171 seconds