Spelling suggestions: "subject:"stellar mass los""
1 |
The Dynamic Atmospheres of Classical Cepheids: Studies of Atmospheric Extension, Mass Loss, and ShocksNeilson, Hilding 19 February 2010 (has links)
In this dissertation, we develop new tools for the study of stellar atmospheres, pulsating stellar atmospheres and mass loss from pulsating stars. These tools provide new insights into the structure and evolution of stars and complement modern observational techniques such as optical interferometry and high resolution spectroscopy. In the first part, a new spherically symmetric version of the Atlas program is developed for modelling extended stellar atmospheres. The program is used to model interferometric observations from the literature and to study limb-darkening for stars with low gravity. It is determined that stellar limb-darkening can be used to constrain fundamental properties of stars. When this is coupled with interferometric or microlensing observations, stellar limb-darkening can predict the masses of isolated stars. The new SAtlas program is combined with the plane-parallel hydrodynamic program Hermes to develop a new spherically-symmetric radiative hydrodynamic program that models radial pulsation in the atmosphere of a star to depths including the pulsation-driving regions of the stars. Preliminary tests of this new program are discussed.
In the second part, we study the recent observations of circumstellar envelopes surrounding Cepheids and develop a mass-loss hypothesis to explain their formation. The hypothesis is studied using a modified version of the Castor, Abbott, & Klein theory for radiative-driven winds to contain the effects of pulsation. In the theory, pulsation is found to be a driving mechanism that increases the mass-loss rates of Cepheids by up to four orders of magnitude. These mass-loss rates are large enough to explain the formation of the envelopes from dust forming in the wind at large distances from the surface of the star. The mass-loss rates are found to be plausible explanation for the Cepheid mass discrepancy. We also compute mass-loss rates from optical and infrared observations of Large Magellanic Cloud Cepheids from the infrared excess and find mass loss to be an important phenomena in these stars. The amount of infrared excess is found to potentially affect the structure of the infrared Leavitt law.
|
2 |
The Dynamic Atmospheres of Classical Cepheids: Studies of Atmospheric Extension, Mass Loss, and ShocksNeilson, Hilding 19 February 2010 (has links)
In this dissertation, we develop new tools for the study of stellar atmospheres, pulsating stellar atmospheres and mass loss from pulsating stars. These tools provide new insights into the structure and evolution of stars and complement modern observational techniques such as optical interferometry and high resolution spectroscopy. In the first part, a new spherically symmetric version of the Atlas program is developed for modelling extended stellar atmospheres. The program is used to model interferometric observations from the literature and to study limb-darkening for stars with low gravity. It is determined that stellar limb-darkening can be used to constrain fundamental properties of stars. When this is coupled with interferometric or microlensing observations, stellar limb-darkening can predict the masses of isolated stars. The new SAtlas program is combined with the plane-parallel hydrodynamic program Hermes to develop a new spherically-symmetric radiative hydrodynamic program that models radial pulsation in the atmosphere of a star to depths including the pulsation-driving regions of the stars. Preliminary tests of this new program are discussed.
In the second part, we study the recent observations of circumstellar envelopes surrounding Cepheids and develop a mass-loss hypothesis to explain their formation. The hypothesis is studied using a modified version of the Castor, Abbott, & Klein theory for radiative-driven winds to contain the effects of pulsation. In the theory, pulsation is found to be a driving mechanism that increases the mass-loss rates of Cepheids by up to four orders of magnitude. These mass-loss rates are large enough to explain the formation of the envelopes from dust forming in the wind at large distances from the surface of the star. The mass-loss rates are found to be plausible explanation for the Cepheid mass discrepancy. We also compute mass-loss rates from optical and infrared observations of Large Magellanic Cloud Cepheids from the infrared excess and find mass loss to be an important phenomena in these stars. The amount of infrared excess is found to potentially affect the structure of the infrared Leavitt law.
|
3 |
Modeling X-ray Emission Line Profiles from Massive Star Winds - A ReviewIgance, Richard 01 September 2016 (has links)
The Chandra and XMM-Newton X-ray telescopes have led to numerous advances in the study and understanding of astrophysical X-ray sources. Particularly important has been the much increased spectral resolution of modern X-ray instrumentation. Wind-broadened emission lines have been spectroscopically resolved for many massive stars. This contribution reviews approaches to the modeling of X-ray emission line profile shapes from single stars, including smooth winds, winds with clumping, optically thin versus thick lines, and the effect of a radius-dependent photoabsorption coefficient.
|
4 |
Vliv ztráty hmoty hvězd na dynamiku hvězdokup / The influence of the stellar mass-loss on the dynamics of star clustersDinnbier, František January 2012 (has links)
This work aims at studying the influence of the stellar mass-loss, resulting from the stellar evolution, on the dynamics of massive star clusters. The emphasis has been put on the mass-loss by low-mass and intermediate-mass stars (m < 8 Mo) that form, at the end of their life, a planetary nebula. The expansion speed of gas released by these stars is lower than the escape speed from sufficiently massive star clusters, and the gas can be retained by the cluster. For modelling of the gas hydrodynamics, a simple sticky-particles method was used. To carry out simulations in which gaseous and stellar particles mutually interact through their gravity, substantial modifications had to be realized in the N-body codes Nbody6 and Hermit. For the sake of comparing the influence of stellar mass-loss and relaxation processes, which are happening in the simplified model, two types of simulations were performed: one with the formation of gaseous particles and the other consisting of purely stellar component. The simulations in which the gas component was present showed out a significantly different evolution in the central part of the cluster than those in which the presence of gas was not considered.
|
Page generated in 0.0807 seconds