• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stroke-induced stem cells proliferation in normal versus diabetic mice and pharmacological regulation / Stroke-inducerad stamcells proliferation i normala kontra diabetiska möss och famakologisk reglering

Fadhel, Zainab January 2015 (has links)
Introduction: Stroke is caused from the occlusion of any cerebral artery leading to cerebral ischemia, brain damage and consequent neurological impairments and disability. The primary causes of mortality in western populations is stroke. Diabetes type 2 is a high risk factor for stroke. Stroke leads to an observable increase of neural stem cell proliferation in the subventricular zone and enhances neurogenesis in the adult rodent and human brain which suggest a mechanism contributing to stroke recovery. Neurogenesis in type 2 diabetes patients is impaired. However, whether stroke-induced neurogenesis is impaired in diabetes has not been studied. Exendin-4 is a drug for clinical treatment of type 2 diabetes which has been shown to have neuroprotective properties in animal studies. However whether Exendine-4 leads to increased neurogenesis after  stroke in the diabetic brain has not been previously studied.  Aims: The specific aims of this project were to determine whether stroke-induced stem cell proliferation is impacted by diabetes in the mouse, and if Exendine-4 regulates stroke-induced stem cell proliferation in normal and diabetic mice. Material and Methods: Aged obese/type 2 diabetic mice were subjected to stroke. The Exendin-4 treatment was started 1.5 hours thereafter. Treatment was continued for one week before animals were sacrificed. Brains were isolated and the neurons were immunostained using the specific proliferation marker Ki67. Neural stem cell proliferation was quantified by counting Ki67+ cells in the ipsilateral (subventricular zone in stroke hemisphere).The estimation was assessed by stereological counts of proliferating stem cell in the subventricular zone.  Results: The number of proliferating stem cell after stroke was statistically significantly higher in the normal mice versus diabetic mice. The effect was present in both sides (control and stroke) of the subventricular zone. Exendine-4 treatment induced statistically significant increased of  stem cell proliferation in normal mice but not in diabetic mice.   Conclusions: The result of this study shows that type 2 diabetes decreased the proliferation of neural stem cell in the subventricular zone and that Exendin-4 enhanced the subventricular proliferation in a preclinical model of clinical relevance. The data suggest that the Exendin-4 treatment could be administered to normal patients suffering from stroke in the ambulance or in the emergency room although more studies are needed.
2

Thrombosis in colorectal cancer

Clouston, Hamish January 2016 (has links)
Thrombosis and colorectal cancer have a bi-directional relationship. The presence of a colorectal malignancy results in an increased risk of developing a thrombosis and the presence of a thrombosis results in a worse cancer prognosis. The physiology causing this is at present unclear but it is proposed that proteins from the tissue factor (TF) pathway may be the instigator of this bi-directional relationship. The in-vitro studies have shown that in colorectal cancer TF impairs that action of colorectal cancer stem cells as demonstrated by reduced cancer sphere formation and also lower expression of the stem cell marker ALDH. The ability for a colorectal cell to avoid anoikis is impaired by a reduced TF level. Proliferation is affected by the level of expression of TF with a significant increase in proliferation with additional expression of TF. The increase in proliferation is further increased by the presence of TF’s ligand factor VIIa. Paradoxically reduced expression of TF also increases colorectal cancer expression. The ERK1/2 pathway offers a possible method by which TF and factor VIIa may exert their proliferative effects. In the prospective clinical cohort study (CHAMPion) abnormal expression of TF pathway proteins (TF, PAR1, PAR2 and thrombin) by both malignant epithelial and cancer associated stromal cells has been demonstrated. The stromal expression was independent of the epithelial expression and was only in stroma in close contact (0.1mm) with epithelial cells suggesting that the TF pathway proteins may have a role in stromal/epithelial communication. There was no link between the expression of TF pathway proteins and clinicopathological markers of a poor prognosis. The plasma expression of markers of TF pathway activation did not demonstrate any role as a biomarker for colorectal cancer or prognosis. The CHAMPion study has demonstrated that 7% of patients undergoing surgery for colorectal cancer have asymptomatic pre-operative DVTs present. A further 6% who were DVT free pre-operatively developed a DVT in the peri-operative period despite receiving venous thromboprophylaxis in line with current national guidelines. Pre-operative d-dimer may have the potential to identify those patients at risk of a post-operative VTE.This thesis establishes the role that TF has in promoting proliferation and anoikis resistance. It also confirms the abnormal expression of TF pathway proteins by colorectal cancer epithelial cells and for the first time demonstrates abnormal expression by the cancer associated stroma. The interaction between the stroma and epithelial cells, combined with the cellular effects of TF suggests that targeting this interaction may have a therapeutic role. The incidence of DVTs pre-operatively suggests that screening patients for the asymptomatic presence of a DVT may have an impact on their clinical outcome. The development of DVTs despite prophylaxis suggests that the level of anticoagulation is insufficient and current guidelines need to be revisited.
3

The Potential Role of Antiretroviral Efavirenz in HIV Associated Neurocognitive Disorders

Brown, Lecia Ashanna Moya 31 March 2017 (has links)
The prevalence of milder forms of HIV-associated neurocognitive disorders (HAND) is rising despite combination antiretroviral therapy (cART). Efavirenz (EFV) is among the most commonly used antiretroviral drugs globally, but causes neurological symptoms that may interfere with adherence and reduce tolerability, and may have central nervous system (CNS) effects that contribute in part to HAND in patients on cART. Thus we evaluated a commonly used EFV containing regimen: EFV/zidovudine (AZT)/lamivudine (3TC) in murine N2a cells transfected with the human “Swedish” mutant form of amyloid precursor protein (SweAPP N2a cells) to assess for promotion of amyloid-beta (Aβ) production (Chapter 3). Treatment with EFV or the EFV containing regimen generated significantly increased soluble Aβ, and promoted increased β-secretase-1 (BACE-1) expression while 3TC, AZT, or, vehicle control did not significantly alter these endpoints. Further, EFV or the EFV containing regimen promoted significantly more mitochondrial stress in SweAPP N2a cells as compared to 3TC, AZT, or vehicle control. We next tested the EFV containing regimen in Aβ - producing Tg2576 mice combined or singly using clinically relevant doses. EFV or the EFV containing regimen promoted significantly more BACE-1 expression and soluble Aβ generation while 3TC, AZT, or vehicle control did not. Finally, microglial Aβ phagocytosis was significantly reduced by EFV or the EFV containing regimen but not by AZT, 3TC, or vehicle control alone. These data suggest the majority of Aβ promoting effects of this cART regimen are dependent upon EFV as it promotes both increased production, and decreased clearance of Aβ peptide. Further (Chapter 4), there is evidence that neural stem cells (NSCs) can migrate to sites of brain injury such as those caused by inflammation and oxidative stress, which are pathological features of HAND. Thus, reductions in NSCs may contribute to HAND pathogenesis. Since the HIV non-nucleoside reverse transcriptase inhibitor EFV has previously been associated with cognitive deficits and promotion of oxidative stress pathways, we examined its effect on NSCs in vitro as well as in C57BL/6J mice. Here we report that EFV induced a decrease in NSC proliferation in vitro as indicated by MTT assay, as well as BrdU and nestin immunocytochemistry. In addition, EFV decreased intracellular NSC adenosine triphosphate (ATP) stores and NSC mitochondrial membrane potential (MMP). Further, we found that EFV promoted increased lactate dehydrogenase (LDH) release, activation of p38 mitogen-activated protein kinase (MAPK), and increased Bax expression in cultured NSCs. Moreover, EFV reduced the quantity of proliferating NSCs in the subventricular zone (SVZ) of C57BL/6 mice as suggested by BrdU, and increased apoptosis as measured by active caspase-3 immunohistochemistry. If these in vitro and in vivo models translate to the clinical syndrome, then a pharmacological or cell-based therapy aimed at opposing EFV-mediated reductions in NSC proliferation may be beneficial to prevent or treat HAND in patients receiving EFV. 1 Portions of this abstract have been previously published (Brown LAM, et al., 2014; Jin, J, et al, 2016) and are utilized with permission of the publisher.1
4

Isolation of potential protein targets of MS-818 using affinity chromatography

Jaffal, Jad M. 01 January 2010 (has links)
According to the National Institute of Neurological Disorders and Stroke, there are more than 600 neurologic disorders that affect approximately 50 million Americans each year. The $91 billion dollars spent by Medicare on Alzheimer's disease and other dementias in 2005 is projected to increase to $189 billion by 2015 [4]. The existence of neural stem cells (NSC's) and neurogenesis makes neural regeneration a viable option. The ethical barriers of using embryonic stem cells, rejection of the transplanted cells, and possible tumor formation, are only a few of the problems that face stem cell transplantation, a widely considered option to repopulate the brain with cells. A noninvasive pharmaceutical approach that can promote neuron regeneration and recovery would be the key to curing many neurodegenerative diseases. The development of MS-818 as a non-invasive enhancer of the proliferation process of NS Cs is revolutionary for the treatment of neurodegenerative diseases. Due to the fact that its mechanism of action remains unknown, the full pharmacological potential of MS- 818 has not been fully exploited [8]. Isolating protein targets of MS-818 is key in identifying the molecular pathways responsible for its mechanism of action. UV-Vis analysis of MS-818 showed absorbance at 275-nm, and this data was used to calculate coupling yield. MS-818 coupled to the NHS-activated sepharose beads of the affinity column with 83% efficiency. Proteins were isolated from human embryonic kidney cells (HEK 293 cells) and applied to the column. Bradford assay confirmed that bound proteins eluted in a concentration dependent manner when an MS-818 gradient was applied to the column. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the eluate revealed two sets of polypeptides migrating at 37-75 kDa and 100-150 kDa. In addition, some trace polypeptides in the sub-35 kDa region could be seen. Although we have not yet identified specific proteins that MS-818 interacts with, we were able to successfully to isolate such proteins.
5

Correlating Innate Functional Recovery From Stroke Either With Stem Cell Proliferation And/Or Limb Rehabilitation

Nagarajan, Devipriyanka 11 August 2016 (has links)
No description available.
6

Energy Metabolism and the Control of Stem Cell Proliferation in Planarians

Frank, Olga 27 October 2020 (has links)
Cell turnover is a common feature of many organs in all animals and is required to maintain organ structure and function. It is achieved by a tightly regulated balance between cell death and cell division, which can be re-adjusted in response to injury and nutrient availability. How the balance between dying and dividing cells is coordinated has however remained unclear. Planarians represent an important model for studying cell turnover in adult animals, because all tissues undergo continuous cell turnover and a single stem cell type – the neoblast – is the exclusive source of all new cells. Moreover, planarians change their body size proportionally and reversibly depending on the nutritional status: feeding induces rapid and transient neoblast proliferation that results in animal growth, while starvation increases the rate of cell death, leading to de-growth. Importantly, also during starvation neoblasts keep proliferating at a basal-level. The hypothesis I addressed with my thesis research is that planarian energy metabolism might be a central mediator of cell turnover, particularly proliferation control and growth. I approached this hypothesis at several levels, including the characterization of the planarian energy metabolism and energy stores, the dependency of proliferation on the diet, and genetic requirements of proliferation control during starvation and feeding. I found that planarians have orthologs of key enzymes of most animal metabolic pathways, but, surprisingly, seem to lack fatty acid synthase. This suggests that planarians are likely not only auxotrophic for cholesterol, but also for fatty acids. I described that planarians store energy as triacylglycerols (TAGs, stored in lipid droplets) and glycogen, with the intestine as the main storage organ. Interestingly, the amount of TAGs and glycogen changes with size and is higher for larger animals, suggesting a regulatory interplay with the known size-dependency of growth/degrowth rates. Further, we demonstrated that the energy stores are the physiological basis of Kleiber’s law that describes the near-universal scaling between metabolic rate and body mass. I further showed that proliferation occurs in three different modes, one during starvation when proliferation is maintained at basal levels and two after feeding, an initial proliferation mode (at three hours after feeding), which is diet independent and a later proliferation (at 24 hours after feeding), which is diet dependent. The two feeding-induced proliferation modes differ not only in their diet-dependencies, but also in their gene expression profiles, as assessed by RNA-sequencing. To identify genes involved in proliferation regulation, I assessed the requirements of different candidate genes in all three proliferation modes in a small-scale RNA interference screen. This screen revealed that insulin signaling, TORC1 and FGFR are involved in regulating basal proliferation during starvation and – most interestingly –that AMP-activated protein kinase (AMPK)-depleted animals showed increased proliferation during starvation at levels characteristic of recently fed animals. This result uncovered AMPK as a modulator that adjusts the neoblast proliferative activity to the nutritional state, potentially independently of TOR. In sum, my work shows how energy metabolism and storage are coordinated with proliferation and growth in planarians and identified AMPK as a central modulator that adjust proliferation to cellular energy states. I discuss potential mechanisms by which AMPK modulates proliferation and putative links between AMPK and cell death, the second process of cell turnover. The energy state as the central mediator of cell turnover and the key players and mechanisms that my work revealed in planarians might also apply across different species:Chapter 1 1. Introduction 1 1.1 Cell turnover is a crucial process for tissue homeostasis 1 1.2 Cell division 2 1.2.1 Control mechanisms of cell division 2 1.2.1.1 Cell cycle machinery 2 1.2.1.2 Organization of the cell cycle control system – cell-cycle intrinsic regulation by Cdk-cyclin complexes 3 1.2.1.3 External control of cell cycle progression 4 1.2.1.4 Metabolic control of cell cycle progression 6 1.2.2 Metabolic requirements of proliferating cells 10 1.2.2.1 The energy stores 11 1.3 Cell death 13 1.4 Suggested mechanisms that coordinate cell death and division and their caveats 14 1.5 Planarians as a model to study cell turnover 16 1.6 Planarian body anatomy 18 1.7 Planarian stem cell system 19 1.7.1 Neoblasts form a heterogeneous population 19 1.7.2 Neoblast proliferative activity 21 1.7.3 Neoblast cell cycle machinery 22 1.7.4 Regulation of neoblast proliferative activity 22 1.8 Cell death in planarians 23 1.9 Mechanisms that coordinate the rate of dividing and dying cells in planarians still remain elusive 24 1.10 Scope of the thesis 24 Chapter 2 2. Planarian energy metabolism and the regulation of planarian growth dynamics 26 2.1 Introduction 26 2.2 Part 1: Planarian energy metabolism 27 2.2.1 The metabolic machinery of S. mediterranea 27 2.2.2 Planarian energy stores 30 2.2.2.1 Visualization of lipid and glycogen storage compartments in planarians 30 2.2.2.2 Investigation of feeding-dependent changes in lipid and glycogen stores 31 2.3 Part 2: Role of planarian organismal energy stores in regulating their growth and degrowth dynamics 36 2.3.1 Background information about known aspects of growth and degrowth dynamics in planarians 36 2.3.1.1 Growth and degrowth arise mainly from changes in cell number 36 2.3.1.2 Growth and degrowth rates are size dependent 37 2.3.2 Energy stores increase disproportionately with size and strongly contribute to the size-dependent dry mass increase 38 2.3.3 Metabolic rate and energy intake are unlikely causes of the size-dependency of the energy stores 41 2.4 Summary and Discussion 43 2.4.1 Part 1: First insights into planarian energy metabolism 43 2.4.1.1 Core planarian metabolic pathways 43 2.4.1.2 Characterization of planarian energy stores 44 2.4.2 Part 2: Implications of size-dependent behavior of planarian energy stores 44 2.4.2.1 Role of energy stores as the physiological origin of Kleiber’s law in planarians 44 2.5 Outlook 46 Chapter 3 3. Towards understanding a systems-level regulation of neoblast proliferative activity 48 3.1 Introduction 48 3.2 Assay development for quantitative determination of proliferating cells 50 3.3 Food quantity and quality affect the later proliferation phase, but not the initial response to feeding 53 3.4 Deep sequencing time course provides insights into gene-expression changes in response to feeding 56 3.5 Discussion 59 3.5.1 Evidence for feeding-induced neoblast regulation at the G0/G1-to-S transition 59 3.5.2 Three distinct modes of neoblast proliferation 59 3.5.3 Early and late proliferation modes show distinct transcriptional profiles 59 3.5.4 Implications from feeding and gene expression profiling experiments 60 3.5.4.1 Potential explanations for diet dependence of the late proliferation mode 60 3.5.4.2 Potential mechanisms of diet-independent early proliferation response 61 3.5.5 Summary and Outlook 61 Chapter 4 4. Towards identifying the mechanisms underlying the regulation of neoblast proliferation 63 4.1 Introduction 63 4.1.1 Chosen gene candidates and their known role in proliferation 64 4.2 RNAi-mediated depletion of candidate genes to test their regulatory role in proliferation 67 4.2.1 Assay design and optimization for the functional RNAi screen 67 4.2.2 Results of small-scale RNAi screen 69 4.3 AMPK - a potential integrator of neoblast proliferation to the nutritional state of the animal 73 4.3.1 AMPK and LKB1 knockdown increases proliferation during starvation 73 4.3.2 AMPK depletion-phenotype of increased proliferation during starvation seems to be TOR independent 73 4.4 Discussion 76 4.4.1 Evidence for a mechanism that regulates basal proliferation during starvation 76 4.4.2 AMPK integrates neoblast activity in response to feeding 77 4.4.2.1 Implications of my observations 77 4.4.2.2 Possible experiments to test the role of AMPK during the regulation of proliferation 78 4.4.3 AMPK potentially regulates proliferation independently of TOR 79 4.4.4 An evolutionarily conserved stem cell switch? 80 4.4.5 Summary and Outlook 80 Chapter 5 5. Discussion and Outlook 81 5.1 Cell-autonomous roles of AMPK in proliferation regulation 83 5.1.1 Independent regulation of ribosomal translation elongation as a potential modulator of neoblast proliferation 83 5.1.2 AMPK might regulate cell cycle progression directly 85 5.1.3 AMPK might regulate symmetric versus asymmetric cell division 85 5.2 Cell non-autonomous roles of AMPK in proliferation regulation 86 5.2.1 AMPK might modulate the release of lipid stores 86 5.3 Possible role of AMPK in regulation of autophagic cell death 87 5.4 AMPK as a potential modulator of cell turnover that couples cell proliferation and cell death to the animal’s energy state 88 5.5 Summary and Outlook 89 Materials and Methods 91 List of Figures 106 List of Tables 107 Acknowledgments 108 References 110

Page generated in 0.1536 seconds